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Abstract A new method is presented to estimate the binding affinity of a protein-ligand complex with
known three-dimensional structure. The method, SCORE, uses an empirical scoring function to de-
scribe the binding free energy, which includes terms to account for van der Waals contact, metal-ligand
bonding, hydrogen bonding, desolvation effect, and deformation penalty upon the binding process. The
coefficients of each term are obtained by multivariate regressional analysis of a diverse training set of
170 protein-ligand comples. The ihal scoring function reproduces the binding free energies of the
whole training set with a cross-validated deviation of 6.3 kJ/mol. The predictive ability of the function
is further tested by a set of 11 endothiapepsin complexes and the internal consistency of the function is
demonstrated in a stepwise procedure named Evolutioeaty Amajor innovation of this method is

the introduction of an atomic binding score which allows the researcher to inspect and optimize the
lead compound rationally in a structure-based drug design scheme.

Keywords Protein-ligand complex, Binding affinity, Empirical scoring function, Structure-based drug
design

new leads may originate from three-dimensional database
searching or so-callede novomethods. However, all these

. ) , i _approaches are limited by the accuracy with which the af-
Three-dimensional structures of proteins, provided by €iinity of proposed ligands can be gauged. Since correct rank-
ther X-ray crystallography or NMR spectroscopy, are be-ing of putative ligands for synthesis is a prerequisite to a
coming increasingly important in the design of novel drugs.yseful strategy for drug design, there is a clear need for an
They have enabled medicinal chemists directly to inspechpjective method that is able to predict the binding affinity
those structural properties of a target protein that are essegf 5 protein-ligand complex in a quantitative way.

tial for interacting with a ligand. This in principle allows for Predicting the binding affinity of a ligand to its target
the rationalisation of the design process which is referred t?)rotein is still a scientific challenge atesent. Acompre-

as structure-based drug design [1-12]. In such a procesgensive review of this area has been provided by Ajay and
Murcko [13]. With respect to the rigorous calculation of rela-
tive binding energies, substantial progress has been made
with free energy perturbation (FEP) [14] which is currently
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the only method that attempts to deal seriously with caldabase hits and scoring molecules generatedebgovode-
lating ensemble averages and considers solvent molecsiga programs.
explicitly. However, despite various approximations geared In this paper, we present a new general-purposed empiri-
towards performance enhancement, this method is compuet-method, SCORE, for estimating the absolute binding af-
tionally intensive and restricted to small molecular systeniigiity of a protein-ligand complex with known three-dimen-
Therefore, it is less practical in drug design where the sywienal structure. We try to accomplish two goals in this study:
thetic chemists require fast feedback from the modeling dg-developing a fast, accurate, and robust scoring function
partment. for structure-based drugesign. We have used a linear em-

Another popular method for assessing protein-ligand birglrical scoring function to describe the binding free energy
ing is molecular mechanics. Following the pioneering idé@awhich new terms and parameters are used. The final model
of Goodford [15], the interaction energy between the proteims obtained by regressional analysis upon a training set,
and its ligand is calculated by a simplified, often grid-bas®dhich is the largest one yet reported, composed of 170 com-
force field. Basic components may include steric and elgdex structures. (ii) providing a practical tool to interpret the
trostatic energies, sometimes supplemented by other temtsraction between the protein and its ligand. According to
accounting for hydrogen bonding and solvation effects [16dr method, the binding affinity of the ligand can be decom-
20]. The purely molecular mechanics-based method has beesed to the contribution of individual atoms. Each ligand
applied widely to molecular docking studies which aim atom gets a score, the called atomic binding score, indicat-
finding the bound conformation of the ligand. But for esting its role in the binding pcess. Thentroduction of the
mating binding affinities, the success of such approacteemic binding score allows the designer to inspect and
depends on the ability to define the set of ligands on whigptimize the lead compound structure in a more rational way.
predictions will be applied carefully.

More recently, empirical schemes have met with signifi-
cant inteest. Thebasic assumption undeed in such ap- Methods and computation results
proaches is thahe overall binding free energy can be de-
composed into components. This can be written out concep-
tually by the following equation.

Training set
AGbinding = AG‘motion"' AG‘interaction o . . . .
+AG N The training set used in this study comprises 170 protein-
solvent configuration ligand complexes (see Table 1). All the complexes were taken
The parameters in the equation are often determined frisom the Protein Data Bank (PDB) [30]. Since our interests
binding data in a statistical manner. This kind of approachai® concentrated on small non-covalently bound ligands, those
also referred to as “Master Equatidi3]. At the very be- complexes containing covalently-bound ligands, complex lig-
ginning, such approaches were also applied only to congads (such as heme), and macromolecular ligands were
neric series [21-25]. As a breakthrough, Bohm was the figstipped out of the data set. More than seventy different kinds
who developed a general-purposed empirical function to déproteins are represented in this training set and all the struc-
scribe the binding enerd®6]. The freeenergy of binding tures are of high resolution (better than 3.2 A). The experi-
was written as the sum of terms including a constant repmieentally determined binding data were cited from the litera-
senting overall rotational and translational entropy loss, a sture [26-29] and expressed in the negative logarithms of dis-
over all hydrogen bonds formed, a sum over all ionic interawciation equilibrium constants, i.e. por convenience.
tions, the loss of lipophilic surface area upon binding, afitie pK, values in this set range from 1.54 to 13.96, covering
the number of torsions that are frozen. A linear equation vagr 12 orders of magnitude. We have not checked the bind-
obtained through regressional analysis of 45 protein-ligaimg) data for differences in temperature or salt concentrations
complexes and the equation seemed to have reasonabledudng measurement.
dictive ability in the example tested. A more complicated Each complex in the training set was processed with the
procedure was reported by Head et al. who had examinedS¥BYL software [31] as follows. First, the ligand was ex-
protein-ligand complexes using partial least squares regreaeted from the complex structure, assigned proper atom and
sion and a neural netwofR7]. They deeloped a hybrid bond types, and written out as a separate file in MOL2 for-
model combining energetic considerations from moleculavat. The remainding part of the complex, i.e. the protein,
mechanics and calculated molecular properties relatedat@s then written out to another file in PDB format. Water
desolvation and entropy loss upon the binding process. Simblecules, metal ions, and other cofactors were left with the
lar empirical schemes are also reported by Gschwend epadtein and treated as part of it. No further structure minimi-
[28] and Eldridge et al. [29] who have obtained scoring funsation was performed on either the ligand or thuepr. A
tions by using much larger data sets. These approaches aspetial note should be addressed here is that hydrogen atoms
course simplistic methods, but they could capture the essme unnecessary in the structure because our algorithm, as
tial physics of protein-ligand binding at modest computdescribed below, considers heavy atoms only.
tional cost. They have been proved valuable in screening da-
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Table 1 Training set used in SCORE

PDB pPK 4 Resl. Protein/ligand

laaq 8.40 2.5 HIV-1 protease/hydroxyethylene isostere
labe 6.52 1.7 L-arabinose binding protein/L-arabinose
labf 5.42 1.9 L-arabinose binding protein/D-fucose

ladb 8.40 2.4 alcohol dehydrogenase/CNAD

ladf 4.58 2.9 alcohol dehydrogenase/TAD

lapb 5.82 1.76 L-arabinose binding protein P254G/D-fucose
lapt 9.4 1.8 penicillopepsin/pepstatin analogue

lapu 7.49 1.8 penicillopepsin/lvaValValSta-OEt

lapv 9.00 1.8 penicillopepsin/lvaValVal(H)Dfo-N-methylamide
lapw 8.00 1.8 penicillopepsin/lvaValValDfo-N-methylamide
1lbap 6.85 1.75 L-arabinose binding protein P254G/L-arabinose
lbra 1.82 2.2 trypsin mutant/benzamidine

1cbx 6.35 2.0 carboxypidase A/L-benzylsuccinate

1cla 5.28 2.34 chloramphenicol acetyltransferase/chloramphenicol
lcps 6.66 2.25 carboxyptdase A/CPM

lcsc 7.10 1.7 citrate synthase/carboxymetiodnzyme A
lcsc 1.62 1.7 citrate synthase/L-malate

1dbb 9.00 2.7 DB3/progesterone

1dbj 7.68 2.7 DB3/aetiocholanolone

1dbk 8.09 3.0 DB3/5-b-androstanedione

1dbm 9.44 2.7 DB3/progesterone analogue

1dhf 7.4 2.3 DHFR/folate

1dih 5.74 2.2 dihydrodipicolinate RADPH

1dr1 5.57 2.2 dihydrofolate reductase/biopterin

1drf 7.44 2.0 dihydrofolate reductase/folate

1ldwb 2.90 3.16 thrombin/benzamidine

ldwc 7.41 3.0 thrombin/MD-805

1dwd 8.18 3.0 thrombin/NAPAP

lebg 10.82 2.1 enolase/phosphonoacetohydroxamate

letr 7.41 2.2 thrombin/MQPA

lets 8.22 2.3 thrombin/NAPAP

lett 6.19 2.5 thrombin/4-TAPAP

1fbc 6.26 2.6 fructose-1,6-bisphosphatase/2,5-anhydroglucitol-1,6-bisphosphate
1fbf 6.00 2.7 fructose-1,6-bisphosphatase/2,5-anhydromannitol-1,6-bisphosphate
1fbp 4.82 2.5 fructose-1,6-bisphosphatase/AMP

1fkb 9.70 1.7 FK506 binding protein/rapamycin

1fkf 8.77 1.7 FK506 binding protein/FK506

1gst 4.68 2.2 glutathione S-transferase/glutathione

1hbv 6.37 2.3 HIV-1 protease/SB-203238

lhpv 9.22 1.9 HIV-1 protease/VX-478

1hsl 7.30 1.89 histidine binding protein/Histidine

1htf 8.09 2.2 HIV-1 protease/GR-126045

1htg 9.68 2.0 HIV-1 protease/GR-137615

1hvi 10.07 1.8 HIV-1 protease/A-77003

1hvj 10.45 2.0 HIV-1 protease/A-78791

1hvk 10.11 1.8 HIV-1 protease/A-76928

1hvl 9.00 1.8 HIV-1 protease/A-76889

lhvs 10.08 2.25 HIV-1 mtease V82A/A-77003

1183 3.40 1.70 lysozyme/benzene

1lldm 5.44 2.1 Mdlactate dehydrogenase/NAD

ligr 3.07 2.8 glutamine synthetase/AMP

llyb 11.42 2.5 cathepsin D/pepstatin

1mcb 4.84 2.7 immunoglobulin/peptide
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Table 1 Training set used in SCORE (continued)

PDB pK, Resl. Protein/ligand

Imcf 5.15 2.7 immunoglobulin/peptide

1mch 5.15 2.7 immunoglobulin/peptide

lmcj 3.78 2.7 immunoglobulin/peptide

1mcs 4.84 2.7 immunoglobulin/peptide

1mdq 5.10 1.9 maltose bindinggtein A301GS/maltose
1mfe 5.31 2.0 immunoglobulin/D-gal-D-abe-D-man

lmnc 9.00 2.1 neutrophil collagenase/hydroxamate

1nnb 5.30 2.8 neuraminidase/DANA

1phh 7.35 2.3 p-hydroxylbenzoate hydroxylase/FAD
1pgp 5.70 2.5 6-PGDH/6-phosphogluconic acid

1ppc 6.16 1.8 trypsin/NAPAP

1pph 6.22 1.9 trypsin/3-TAPAP

1ppk 7.66 1.8 penicillopepsin/phospho analogue

1ppl 8.55 1.7 penicillopepsin/IVA-VAI-VAI-LEU-P-(O)PHE-OME
lppm 5.80 1.7 penicillopepsin/CBZ-ALA-ALA-LEU-P-(O)PHE-OME
1rbp 6.72 2.0 retinol binding protein/retinol

1lrne 8.70 2.4 renin/CGP-38560

1rnt 5.18 1.9 ribondeaseT1/2'-GMP

lrus 3.08 2.9 rubisco/3-phosphoglycerate

1snc 6.70 1.65 staphylococcal nuclease/deoxythymidine 3',5'-bisphosphate
1ltha 5.35 2.0 transthyretin/3,3'-diiodo-L-thyronine

1tlp 7.56 2.3 thermolysin/phosphoramidon

1ltmn 7.47 1.9 thermolysin/N-(1-carboxy-3-phenyl)-L-LeuTrp
1ltmt 6.24 2.2 thrombin/D-Phe-Pro-Arg

1ltng 2.93 1.8 trypsin/aminomethylcyclohexane

1tnh 3.37 1.8 trypsin/4-fluorobenzylamine

1tni 1.70 1.9 trypsin/4-phenylbutylamine

1tnj 1.96 1.8 trypsin/2-phenylethylamine

1tnk 1.49 1.8 trypsin/3-phenylpropylamine

1tnl 1.88 1.9 trypsin/t-2-phenylcyclopropylamine

lulb 4.40 2.75 PNP/guanine

Ixli 1.48 2.5 D-xylose isomerase/5-thio-alpha-D-glucose
2ak3 3.86 1.9 adenylate kinase isoenzyme-3/AMP

2cgr 7.27 2.2 immunoglobulin/GAS

2csc 3.36 1.7 citrate synthase/D-malate

2ctc 3.89 1.4 cartxypeptidase A/L-phenyl lactate

2dbl 8.70 2.9 DB3/pregnhane analogue

2dri 6.52 1.6 D-ribose binding protein/b-D-ribose

2gbp 7.40 1.9 galactose binding protein/galactose

2ifb 5.44 2.0 fatty acid binding protein/C15COOH

2ldb 4.15 3.0 L-lactate dehydrogenase/NAD+

2mep 4.70 3.1 immunoglobulin/phosphocholine

2phh 3.36 2.7 PHBH/ADP ribose

2phh 4.60 2.7 PHBH/p-hydroxybenzoic acid

2pk4 4.32 2.25 plasminogen kringle 4/aminocaproic acid
2r04 6.22 3.0 virus coat protein/compound 4

2rnt 3.78 1.8 ribondease T1K25/guanylyl-2',5'-guanosine
2sns 6.70 15 staphylococcal nuclease/2'-deoxy-3',5'-diphosphothymidine
2tmn 5.89 1.6 thermolysin/N-phosphory-L-leucinamide
2xim 2.28 2.3 D-xylose isomerase K253R/xylitol

2xis 5.82 1.71 xylose isomerase/xylitol

2ypi 4.82 2.5 TIM/phosphoglycolic acid

3cla 4.94 1.75 chloramphenicol acetyltransferase/chloramphenicol
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Table 1 Training set used in SCORE (continued)

PDB PKy Resl. Protein/ligand

3cpa 4.00 2.0 cadxypeptidaseA/GT

3csc 5.15 1.9 citratsynthase/acetyl coenzyme A

3csc 2.64 1.9 citrate synthase/L-malate

3fx2 9.3 1.9 flavodoxin/FMN

3gap 5.00 2.5 catabolite gene activator protein/cAMP

3pgm 3.19 2.8 phosphoglycerate mutase/phosphoglycerate
3ptb 4.50 1.7 trypsin/benzamidine

3tmn 5.90 1.7 thermolysin/ValTrp

4cla 5.47 2.0 chloramphenicol acetyltransferase/chloramphenicol
Adfr 8.62 1.7 DHFR/methotrexate

4fab 8.05 2.7 lgG kapa Fab 4-4-20/fluorescein dianion

4grl 2.20 2.4 glutathione reductase/retro-GSSG

4hvp 6.11 2.3 HIV-1 protease/MVI01

4mdh 3.23 2.5 cytoplasmic malate/NAD+

4phv 9.17 2.10 HIV-1 protease/L-700417

4sga 3.27 1.8 proteinase A/Ace-Pro-Ala-Pro-Phe

4tim 2.16 2.4 triosephosphate isomerase/2-phosphoglycerate
4tln 3.72 2.3 thermolysin/Leu-NHOH

4tmn 10.17 1.7 thermolysin/ZFpLA

4ts1 5.61 2.5 Tyrosyl-transfer RNA synthetase/tyrosine

4xia 1.54 2.3 D-xylose isomerase/D-sorbitol

5abp 6.64 1.8 ABP/D-galactose

5acn 2.80 2.1 aconitase/tricarballylic acid

5cha 2.00 2.0 concanalin A/a-Me-D-mannopyranoside

5enl 3.8 2.2 enolase/2-phospho-D-glycerate

5hvp 7.46 2.0 HIV-1 protease/acetylpepstatin

5icd 5.29 2.5 isocitrate dehydrogenase/isocitrate

5ldh 2.82 2.7 lactate dehydrogenase/isocitrate

5p21 5.32 1.35 ras p21 protein/GPPNP

5sga 2.85 1.8 [pteinaseA/Ace-Pro-Ala-Pro-Tyr

5tim 2.30 1.83 triosephosphate isomerase/DTT

5tin 6.37 2.3 thermolysin/INA

5tmn 8.04 1.6 thermolysin/ZGp(NH)LL

5xia 2.60 25 D-xylose isomerase/xylitol

6abp 6.36 1.67 L-arabinose binding protein M108L/L-arabinose
6apr 7.77 25 rhizopuspepsin/pepstatin

6cpa 11.52 2.0 cadxypeptidase A/ZAAp(O)F

6enl 3.0 2.2 enolase/phosphoglycolic acid

ernt 2.37 1.8 ribondease T1/2'-AMP

6tim 3.21 2.2 triosephosphate isomerase/glycerol-3-phosphate
6tmn 5.05 1.6 thermolysin/ZGp(O)LL

7abp 6.46 1.67 L-arabinose binding protein M108L/D-fucose
7acn 4.31 2.0 aconitase/isocitrate

7cat 8.00 2.5 catalase/NADPH

7cpa 13.96 2.0 carbgpeptidaseA/BZ-FVP(O)F

7dfr 4.96 25 DHFR/folate

7dfr 6.10 25 DHFR/NADP+

Test 7.60 1.8 elastase/TFAP

Thvp 9.62 2.4 HIV-1 protease/JG-365

7tim 5.40 1.9 triosephosphate isomerase/phosphoglycolohydroxamate
7tln 2.47 2.3 thermolysin/CH2CO-Leu-OCH3

8abp 6.60 1.49 L-arabinose binding protein M108L/D-galactose

8acn 7.14 2.0 aconitase/nitroisocitrate
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Table 1 Training set used in SCORE (continued)

PDB pK, Resl. Protein/ligand

8atc 7.57 2.5 aspartate carbamoyltransferase/PALA

8cpa 9.15 2.0 cadxypeptidase A/BZ-AGP(O)F

8hvp 9.00 2.5 HIV-1 protease/U-85548E

8icd 3.02 2.5 isocitrate dehydrogenase/isocitrate

8xia 2.95 1.9 D-xylose isomerase/D-xylose

Qaat 8.22 2.2 aspartate aminotrana$eypyridoxal-5'-phosphate
9abp 8.00 1.97 L-arabinose binding protein P254G/D-galactose
9hvp 8.35 2.8 HIV-1 protease/A-74704

9ldt 5.43 2.0 lactate dehydrogenase/NADH

9ldt 4.74 2.0 lactate dehydrogenase/oxamate

9rub 4.70 2.6 rubisco/ribulose-1,5-bisphosphate

Scoring function and its ligand can be neglected due to the competitive inter-

action with water in the unbound state while the VDW repul-
We assume that the free energy change in the protein-ligaimh cannot.
binding process can be dissected into basic components. Oun our algorithm, the term for VDW interaction is simply
scoring function takes the following form. a pairwise counting of VDW bumps between the protein and

the ligand,
pKd = K0 + dew+ Kmetal+ K hbond

1 = .
+ Kdesolvation+ K deformation ( ) KVdW - Z Z VB(d'J) (2)
| J

Here K, represents the contribution of van der Waals intefB (4) =1 di<r+g- 0.60A
action between the protein and its ligakg,,,the contribu- =0 djzr+15-0.60A
tion of metal-ligand bonding, ., the contribution of hy-
drogen bondingK .. vaiontN€ contribution of desolvationwhere yis the VDW adius of ligand ®m i and 1 is the
effect, andK¢rmaionthe contribution of deforntian. K, is VDW radius of protein atony; d; is the distance between
the regression constant which may contain the translatioasdmi andj.
and rotational entropy loss upon the binding process.

(2) Metal-ligand bonding. A variety of proteins have metal
(1) Van der Waals (VDW) interaction.This kind of interac- cations in their active sites, such as?¥dC&*, Mn?*, and
tion is a balance between attractive dispersion force and shar&'. In such cases, coordinate bonding between the metal
range repulsionAlthough it is well accepted that van deand the ligand can often be important for the stability of the
Waals interactions play a fundamental role in the binding @dmplex. In our algorithm, the metal cation in the active site
the protein and its ligand, arguments exist in how to repig-treated as part of the protein and metal-ligand bonding is
sent it in calculating the binding affinity. Some researchadstinguished from hydrogen bonding. By Wwsing theln-
assume that protein-ligand, protein-solvent, and ligand-stdrnational Tables for CrystallograpH$2], we find that, in
vent interfaces are well packed and hence neglect any chasmyamon coordinate compounds, most of Mg/Ca/Mn/Zn ...
in the VDW interactions upon binding. Some others assur@®N bonds lengthen between 1.9A to 2.2A. As an approxi-
that VDW interactions are better in a complex and therefaration, the ideal bond length of a metal ... O/N bond is set to
explicitly include them. By analyzing the training set, we.0A in our algorithm and a distance function is used to ac-
believe that they all tell only part of the story. In general, oweunt for the deviation from the ideal value,
will find a closely packed interaction interface in a protein-

ligand complex where many atom pairs are in a distance mwgB (d) = 1.0 d < 2.0A
shorter than the sum of their VDW radii, i.e. they form VDW =3.0-d 20A<d<3.0A
bumps. Not all of these bumps come from hydrogen bonding =0 3.0A<d

or other strong interactions. Some of them are just the result

of the tight binding between other parts of the protein and {{ere d is the metal ... O/N bond length. The cutoff of 3.0A

ligand. It is not reasonable to assume that such a situaigfhes from the observation that there is no metal-ligand bond
can also be found on the protein-solvent or ligand-solvgghger than this in the entire training set.

interface where the water molecules are mobile. Thus, ourThe term for metal-ligand bonding in our algorithm is the
conclusion is thathe VDW attaction between the proteing,m over all metal-O/N bonds,
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WHB are indicators for strong, moderate, and weak hydro-
Kmetal = Z Z MB(di,-) (3) 9en bond respectively. In addition, because of the specificity
T ] of water-involved hydrogen bond, we use another three indi-

cators defined in the same way

where qjv\;efers to the distance between liganohai and

metal j. We do not differentiate the types of metal ... O/SWH (d) =1 d < g - 0.60A
bonds so that no weight factor is needed. =0 otherwise
MWH (d) =1 d,- 0.60A< d < ¢, — 0.30A
(3) Hydrogen bonding.Hydrogen bonding is no doubt one =0 otherwise
of the key features for a specific binding process. Such intgywH (d)= 1 d,—0.30A<d < q
action may happen when two atoms get close enough and =0 otherwise

form a donor-acceptor pair. In our algorithm, a hydrogen bond

donor is defined as a nitrogen or oxygen atom with hydrog@nrepresent strong, moderate, and weak water-involved hy-
attached; while an acceptor is defined as a nitrogen, oxyg@idgen bond respectively. The contribution of the six terms
or fluorine atom with at least one vacant valence to accepfifve will be determined by regression and therefore the use
hydrogen atomAccordingly, all the atoms on the proteiryf gn imagined distance function is avoided.
and the ligand are labeled as either donor (D), acceptor (A),The angular dependence of hydrogen bonding strength
donor/acceptor (DA), or none (N). _ proved to be another problem. In our method, we do not use
The geometry of a hydrogen bond is characterized by ty@nction to account for this for two reasons. First, it is diffi-
parameters: the bond length, i.e. the distance between D @qiflto design such a function. Many researchers, including
A, and the bond angle, i.e. the angle among D-H ...A. T{ig, have investigated the distribution of hydrogen bond angle
calculation of the former is straightforward. We define thatigy analyzing various databases of small molecules or macro-
hydrogen bond is possible only when the bond length is shofR§lecules. The general conclusion is thethough some
than the sum of VDW radii of D and A. However, the calCiinds of hydrogen bonds tend to favour certain orientations,
lation of the bond angle is of some difficulty since we avoiflere is usually a wide distribution in hydrogen bond angles.
the explicit use of hydrogen atoms in the structure. To Cithys, it seems quite unpractical to using one angular func-
cumvent this problem, we use two other angles involving oRfyn to deal with all kinds of hydrogen bonds. Second, it may
heavy atoms instead. They are computed among X-D...A a{$} pe necessary to design such a function. In fact, there is
D...A-X, where X represents the adjacent heavy atom orptt enough experimental evidence to explain how a hydro-
there are more than one adjacent atom, their geometric GRity hond acts if its angle deviates from the “ideality”. There-
tres. We have irestigated the distribution of these two aryre, it is not surprising that there is no standard method to
gles among all typical kinds of hydrogen bond and fourguge the angular dependence of hydrogen bonding strength
that they are not likely to be lower than 70 degrees fora@present. We have tried some simple-formed angular func-
plausible hydrogen bond. Thus, an angle cutoff is set in @ighs while developing our model. However, such attempts
algorithm for defining a hydrogen bond: if either of thesgere proved to help little.
two angles is lower than 70 degrees, the geometry of the do{n our method, the contribution of hydrogen bonding is

nor-acceptor pair under investigation is poor and therefgfg sum over all hydrogen bonds formed between the protein
overlooked. In the case of water-involved hydrogen bonddfq its ligand.

which water has no adjacent heavy atom, only the possible
angle is used in judgement.

In other empirical methods [26], the distance dependen
of hydrogen bonding strength is gauged typically by usinga = z z SHd(%)+ z z MHE{ q)
linear distance function which decreases from 1 to 0 in a — 5 — 5
certain range. Such definition is rather subjective since hy-

drogen bonding need not behave in such a simple and ideal ~ + z ZWHB(CIJ )+ Z Z SW"G 9) (4)
manner. In our algorithm, a step function is used instead. We v ol

define, +ZZMWH(OIJ)+ZZWW*( ﬁ’)

lé@bond =K sngt K wret K wret K swit Ky K wwe

SHB (d) =1 d < -0.60A
=0 otherwise

MHB (d) =1 d, - 0.60A< d < ¢, 0.30A Here, we do not differentiate the types of hydrogen bonds so
=0 otherwise that no weight factor is needed.

WHB (d) = 1 d,—-0.30A<d < g
=0 otherwise (4) Desolvation effect.Since both the protein and its ligand

are solvated before complexation, the protein-ligand binding
where d represents the distance between D ang #epde- process is accompanied by desolvation, which undergoes
sents the sum of VDW radii of D and A. SHB, MHB, andhanges in entropy as well as in enthalpy. This kind of effect



386 J. Mol. Model.1998,4

is very difficult to characterize accurately. Both the longvhere HM is an indicator of hydrophobic matching. It is set
range “hydrophobic effect” and specific hydrogen bondings 1 if ligand @&om i is hydrophobic and placed in a hydro-
of water could be important in eluciitan. These features phobic environment; otherwise it is set toFQis the atomic
make it unamenable to simple additive pairwise interactiotydrophobic scale of ligandan i. It is used as a weight
So far this effect is typically measured by calculating tHactor here to meet the expectation that a more hydrophobic
buried hydrophobic surface areas during the binding procassm may contribute more to the hydrophobic effect.
[26-29]. However, several defects lie in such approaches: (i)
polar and non-polar atoms are differentiated by very coa(s¢ Deformation effect. Deformation refers to the confor-
definitions; (ii) the choice of solvent accessible surface wrational changes during the binding process. On one hand,
molecular surface seems to depend totally on the reseaichauses adverse entropic changes due to the freezing of in-
er’s intuition; (iii) it is not always clear which buried surfaceernal rotations of both the protein and its ligand; on the other
should be calculated, (a) only the protein, (b) only the ligand, it causes adverse enthalpic change due to the strain
and, or (c) both the protein and the ligand; (iv) accurate, araergy exerted during binding. Based on the principles of
lytical algorithm for calculating the surface is impossibletatistical thermodynamics, the entropic change is usually
Numerical integration has to be used as an approximatioestimated by using a constant value per rotatable bond that is
We have adopted a different method to measure thezen. However, the enthalpic change is more difficult to
desolvation effect, which is simple and explicit. First, ea@iucidate.
atom is assigned a quantitative scale to represent itsWe have noticed that Nicklaus et al., in an informative
hydrophobicity. In a previous paper [33], we have reportecapproach [34], found that the deformational enthalpy of the
method, XLOGP, to calculate the octanol/water partition cliigand upon the binding process also correlates well with the
efficient for an organic compound. The basic idea was tmatmber of rotatabl®onds. Therefore, as samplification,
the logP value of the whole molecule could be expressedaesuse the number of rotatable bonds, i.e. rotors, as a dou-
the summation of atomic contributions. The contributions ble-purposed parameter to estimate both the entropic and
different atom types were derived from the regression anadynthalpic change in deformation. In our algorithm, the term
sis of a large set of compounds. These parameters are tHerethe deformation effect is simply the number of rotors in
fore transplanted into this study as the atomic hydropholie ligand. If a rotor is split into halves and assigned onto the
scales: the more positive the value, the more hydrophobitws atoms involved, this term can also be written as,
the atom; and the more negative the value, the more hy-
drophilic is the atom. In our algorithm, an atom is considzRT = ZO-5X RT; (6)
ered as hydrophobic when its hydrophobic scale is larger than i
0.20 units. Secondhe “envionment” of a ligand atom is
defined as the assembly of all the neighbouring protein atiere RTis the number of rotors in which ligantban i is
oms within 5A. The hydrophobicity of the environment igwolved. Rotor is defined as acyclic3sgp? and sp-sg? sin-
expressed by the sum of the hydrophobic scales of all tie bond. Rotations of terminal -GHNH,, or -OH, whose
protein atoms forming the environment. If the sum is pos6tation do not produce any new conformation of heavy at-
tive, the ligand atom is considered to be in a hydropholims are not taken into account. The flexibility of cyclic por-
environment, otherwise it is considered to be in a hydrophitions of the ligand is ignored.
environment. Therefore, in principle there will be four situa- We have also tried to incorporate the deformation effect
tions: a hydrophilic ligand atom in a hydrophilic environef the protein into computation by simply counting the ro-
ment, a hydrophilic ligand atom in a hydrophobic enviroters of the active site residues or using other protein side-
ment, a hydrophobic ligand atom in a hydrophilic envirohain entropic scales [35]. But such attempts simply did not
ment, and a hydrophobic ligand atom in a hydrophobic enkielp to improve the result. One possible reason is that, even
ronment. In the first three situations, the lose of solvatiomthe unbound state, the side chains of the active site resi-
shell (desolvation) during binding is compensated more dues are generally immobilized due to the stack of neigh-
less by the interaction with a hydrophilic counterpart. Hend®uring residues. Therefore in most cases, unlike the ligand,
a significant change in the overall binding free energy is rtbe protein changes very little to accommodate the ligand.
expected. However, in the last situation, perfect hydropholinother reason may be that empirical parameters are too
matching forms and thus makes a favourable contributionréaugh to model the deformation of the protein. Such behav-
the protein-ligand binding process. iour needs to be modeled by more rigorous and exhaustive
In our algorithm, the term for desolvation effect is a sudynamic simulations, which is definitely unpractical for a
over all hydrophobic matchings between the protein and fast empirical method. Thus, as an simplification, we neglect

ligand, the deformation effect of the protein during the binding proc-
ess in our method.
Kim = Z F x HM, () At this point, a summary of our scoring function should
i

be given. Weeompute the dissociation constant of a protein-
ligand complex by summing all the terms described above.
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Table 2 Atom types and VDW radii used in SCORE

PKg = Ko+ € x Kyg + 6 X Kyg+ 3% Kgpgt €% Ky

*Cs % Kung * Go X Kyt & % Kyt G K Symbol Description radius (A)
+Co X Ky + €10 % Kgr
@) C.3 sp3 hybridized carbon 1.94
C.2 sp2 hybridized carbon 1.90
There are a total of 11 adjustable parameters in this scofing sp hybridized carbon 1.90
function. They will be given by the regressional gsil of C-ar aromatic carbon 1.85
the entire training set. 0.3 sp3 hybridized oxygen 1.74
According to our algorithm, all the terms in the scoring-2 sp2 hybridized oxygen 1.66
function can be computed on the sum over the contributignV water oxygen 1.77
of ligand atoms. After simple linear transformation, the funfk-3 sp3 hybridized nitrogen 1.87
tion can be rewritten as following, N.2 sp2 hybridized nitrogen 1.86
N.1 sp hybridized nitrogen 1.86
_ N.ar aromatic nitrogen 1.86
PKq =Ko+ & x Kygt.. + CoKpr N.am amide nitroger? 1.83
=K+ x Z Kyg,it..-+C1p% Z Kr i N.pl3 trigonal planar nitrogen 1.86
. . S.3 sp3 hybridized sulfur 2.09
S.2 sp2 hybridized sulfur 2.01
=Ko Z (62 Kug . +10% K ) © SO sEIfox)i/de sulfur 2.01
: S.02 sulfone sulfur 2.01
=Ko+ Z Ki F fluorine 1.77
! Cl chlorine 2.00
Br bromine 2.22
. . o . ) ) | iodine 2.42
in which the binding affinity of the whole ligand is expressegg phosphor 2.03

as the addition of the contributions of each ligatwina We

call K; the atomic binding score. It characterizes the role of
an individual ligand atom during the binding process in a

quantitative way. Its potential application will be discusseDOW radius set

later in this paper.

As described above, we use VDW radii in the calculation of
VDW bump and hydrogen bonding. Since each force field
has its own set of VDW radii, making a choice among them
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is rather a subjective issue. When developing our scoring func-
tion, we originally adopted the VDW radius set from the
AMBER force field [36] as it is well established for mod-
eling macromolecules. By using this set of VDW radii in the
scoring function, we obtained promising results in the
regressional analysis of the training set. But since the AM-
BER force field is parameterized to reproduce internal prop-
erties, such as conformation, dipole moment, and heat of for-
mation, we believe that some optimisation on this VDW ra-
dius set is necessary for the purpose of binding affinity esti-
mation. Weoptimized it by applying a Genetic Algorithm
(GA) [37].

In a GA procedure, potential solutions to the problem be-
ing studied are represented as data structures called chromo-
somes. For our problem, a real-value string chromosome is
used. We adopt 22 atom types defined in the Tripos force
field to classify carbon, oxygen, nitrogen, sulfur, phosphor,
and halogens (see Table 2). A chromosome thus contains 22
elements to represent the VDW radii for all the atom types.
For each chromosome, regressional fitting of the whole train-
ing set is done by using Equation 7 and the VDW radius set

. the chromosome repsents. The fithess of the chromosome
Figure 1 The best fithess observed among the whole popigiven the value of the squared correlation coefficient there-

lation along a GA procedure
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Table 3 Coefficients of each

term in the final scoring func- Term description Coefficient [a]

ton Q) VDW bump (VB) -0.168  (+0.110)
(2) Metal-ligand bonding (MB) 0.916  (x0.580)
3) Strong hydrogen bonding (SHB) 0.593  (x0.198)
(4) Moderate hydrogen bonding (MHB) 0.216  (x0.170)
(5) Weak hydrogen bonding (WHB) 0.141  (x0.125)
(6) Strong water-involved H-bonding (SWH) 0.291  (x0.259)
(7 Moderate water-involved H-bonding (MWH) -0.708  (+0.313)
(8) Weak water-involved H-bonding (WWH) 0.327  (x0.258)
9) Hydrophobic matching (HM) 1.178  (x0.253)
(20) Rotor (RT) -0.169  (+0.081)

[a] The walue in brackets is

i +
95% confidence interval Regression constant 2.254  (x0.914)

fore obtained in the regssion. Thus, aideal chromosome fact all the runs could optimize the average and the best fit-
will have the fitness of 1.00. In this way, each chromosomess of the population to approximately the samel.l&he
is directly evaluated according to its ability to reproduce thest set of VDW radii found among all solutions is listed in
binding affinities of the training set. The GA operators usddble 2. All the values in this set seem to be reasonable and,
in our study include mutation and crossover. Here, mutatisince hydrogen is bypassed in the computation, they can be
is a single-point mutation, i.e. only one randomly selectednsidered as the radii for unitetbms. This VDW radius
element in the chromosome is changed by a certain amosat.is adopted in following computations.
The amount is designed to be a random number in the
Gaussian distribution with zero mean and a variance of 0.02A.
Mutation requires one parent chromosome and produces dRégression
one child. Crossover is also a single-point crossover, i.e. a
position along the chromosome is selected at random andJaiing Equation 7, standard multivariate regression was per-
the elements subsequent to the chosen position are tfoemed on the whole training set. It yielded a squared corre-
swapped over between the two chosen chromosomes. Crolgsion coefficient (2) of 0.777, a standard deviatiog) Of
ver requires two parent chromosomes and produces two chit6 log units, which corresponds to 6.6 kJ/mol in binding
dren.

An initial population of chromosomes is generated by
mutation on the original AMBER VDW radius set. After gen
erating the initial population, the GA then runs in cycle
Roulette-wheel selection is used to choose parents for
ducing new members for the next generation. It works ==
giving each member of the population a slice of the whe '8
the size of the slice being proportional to the fitness of t #
member. In this way, when the wheel is spun, a fitter me =
ber will be more likely to be chosen than a less fit memb g 100
We adopt steady-state-with-no-duplicates strategy in our (=
procedure. In each cycle, a new chromosome is produs g 3.0
either by mutation or crossover on the selected parent. A"~
duplicate check, it is compared with the worst member oft 5 6.0 }
existing population. If the new one is better, it becomes ¥
member of the population and the original worst oneisd 6 4.0 |
carded; if not, the new one is discarded and GA goes i}
next generation with the population unchanged. This proc 20 |
is repeated until a pre-set limit of generation is reached.

We ran the above GA procedure with a population size
100, a generation limit of 1500, a mutation rate of 0.50, a
a crossover rate of 0.50. During the procedure, we recort
the average and the best fitness of the whole population. -logKa (observed)
cause of the nature of GA, the procedure has been run a
number of times to find the best solution to the mob A Figure 2 The correlation between the experimental and cal-
typical run is shown in Figure 1 in which the best fitness eilated pK values of 170 complexes in the training set
the population has been optimized from 0.754 to 0.777. In

14.0

12.0
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Table 4 Protein-ligand com- .
plexes in the test set PDB entry Resl. (A) Protein/ligand Exp.[a] Pred.[b]
leed 2.0 endothiapepsin/PD-125754 4.90 6.15
lepo 2.0 endothiapepsin/CP-81282 7.96 8.84
lepp 1.9 endothiapepsin/PD-130693 7.16 6.58
2er0 3.0 endothiapepsin/L-364099 6.40 7.86
2er6 2.0 endothiapepsin/H-256 7.22 6.99
2er7 1.6 endothiapepsin/H-261 9.00 8.67
2er9 2.2 endothiapepsin/L-363564 7.80 7.83
: 3er3 2.0 endothiapepsin/CP-71362 7.10 6.90
[a] Expe(;'me”t?“y deter- 4o 2.0 endothiapepsin/PD-125967 6.62 7.69
[b] I;nrglgicfelgdviulges\./alues der2 2.0 endothiapepsin/pepstatin 9.30 9.27
given by SCORE. 4erd 2.1 endothiapepsin/H-142 6.80 7.00
free energy at room temperature, and a Fisher value F(10,159)
of 57.8. The coefficients of each term in the scoring function z (y - yobs)2
are listed in Table 3. The correlation between the experimegz <= P (10)

tal and calculated pKvalues of the training set is shown in (N-k-1)
Figure 2.

A leave-one-out cross-validation was also performed
the training set and yielded a squared correlation coeffici%rgl
(g?) of 0.743 and a standard deviatiopg(sJ of 1.10 log
units, which corresponds to 6.3 kJ/mol in binding free en-
ergy at room temperature. Hetg,ands,;-ssare defined as

2 _ 1- z (ypred - yobs)2
z (yobs - ymear)2

ereN represents the number of samples in the training set
k represents the number of terms in the scoring function.

Test set

The true value of any empirical model lies in its predictive
ability. In this study, we have used 11 endothiapepsin com-
plexes as the test set (see Table 4)is Bet was chosen for
two reasons: first, there is no other endothiapepsin complex
in the training set; second, the ligands in these complexes are
peptides, which are generally larger and more flexible than
the ligands in the training set. Therefore, this test set tends to
S be a real challenge.

P Applying our scoring function to the test set yielded a
predictive squared correlation coefficieffif () of 0.654 and

- a standard deviatiors{_y) of 0.55 log units (3.2kJ/mol at
298K). The correlgon between the experimental and pre-
dicted pK, values of the test set is shown in Figure 3.

q 9)

and

9.0

8.0

7.0 '
Evolutionary test

6.0 f----- We have designed a stepwise procedure, Evolutionary Test,

]
i to confirm the robustness and the internal consistency of the

-logKa (calculated)

scoring function. This procedure was started from construct-
ing a data set of 30 complex Thecomplexes were ran-
domly selected from the training set without duplicate. Then,
standard regression and leave-one-out cross-validation were
performed on this data set by using the scoring function. The
model thus obtained was also applied to the test set. To mini-
mize the coincidence in such analysis, the above process was

repeated 20 times and th2e average values of all the results,

Figure 3 The correlation between the experimental and cdRclUdingr? s, @ Soress Mpred » Syea @Nd the coefficients of

culated pK values of 11 endothiapepsin complexes in tg@ch term in the scoring function were recorded. The second
test set step of the procedure was constructing a larger data set of 40

50 |----- S b e TN RS ST,

-logKa (observed)
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Table 5 Coefficients of each term in the scoring function in the Evolutionary Test

Sizel[a] VB MB SHB MHB WHB SWH MWH WWH HM RT Const.

30 -0.1712 1135 0.668 0.138 0.185 0.297 -0.655 0.163 1.221 -0.154 1.865
40 -0.152 0.916 0.612 0.219 0.177 0.244 -0.619 0.264 1.225 -0.180 1.952
50 -0.179 0.998 0.646 0.184 0.152 0.310 -0.713 0.319 1.183 -0.155 2.152
60 -0.174 0.924 0.615 0.198 0.169 0.258 -0.629 0.325 1.213 -0.170 2.071
70 -0.175 0.962 0.613 0.197 0.168 0.255 -0.678 0.317 1.201 -0.164 2.109
80 -0.159 0.977 0579 0.202 0.158 0.282 -0.690 0.335 1.227 -0.166 2.075
90 -0.174 0.901 0.612 0.180 0.155 0.268 -0.697 0.333 1.153 -0.152 2.268
100 -0.159 0.866 0.584 0.210 0.160 0.272 -0.682 0.290 1.165 -0.153 2.150
110 -0.164 0.865 0597 0.198 0.149 0.235 -0.675 0.333 1.169 -0.154 2.227
120 -0.167 0.954 0.602 0.197 0.147 0.264 -0.718 0.323 1.165 -0.153 2.238
130 -0.170  0.927 0599 0.186 0.157 0.274 -0.712 0.326 1.189 -0.160 2.228
140 -0.177 0.930 0.622 0.184 0.150 0.275 -0.687 0.321 1.177 -0.155 2.206
150 -0.171 0.932 0.606 0.187 0.154 0.278 -0.686 0.325 1.180 -0.158 2.207
160 -0.178 0.936 0.615 0.193 0.155 0.272 -0.685 0.336 1.192 -0.162 2.178

[a] Size of the data set.

complexes and repeating all the statistical gsigl Then, Program description

the size of the data set was increased to 50, 60, ..., until to

the original training set itself. Thé, ¢?, and rsred obtained Based on the final scoring function obtained, we have writ-

along this procedure are shown in Figure 4hilevthe s, ten a program, SCORE, in the C++ language. All the neces-

Spress aNds, .4 are shown in Figure 4b. The coefficients igary inputs to perform computation include a file storing the

the scoring function obtained along this procedure are lisigdtein in PDB format and another file storing the correspond-

in Table 5. ing ligand in MOL2 format. The program will read in the
structures, assign atom types and parameters, do the calcula-

0.900 | 140

0.800 .\._.N-'-'—-"‘—-——I—l—-._._._._-
120
0.700 /-/_,_._*.-."—.—._'_'

0.600 F L.00 F
0.500 |
080 |
0.400 | —=— 12
—— 2
0.300 | —=— 12 _pred
0.60 |
1 1 Il 1 1 | L i 1 1 1 1 i 1
40 60 80 100 120 140 160 40 60 8 100 120 140 160
Data set size Data set size

Figure 4a The squared correlation coefficients observed irigure 4b The standard deviations (in log units) observed
the Evolutionary Test in the Evolutionary Test
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Table 6 Comparison of SCORE with other similar approaches

Approach Bohm [a] Head [b] Gschwend [c] Eldridge [d] SCORE
Samples [€e] 45 51 103 82 170
Terms [f] 5 13 8 5 11

r? [g] 0.762 0.85 0.745 0.710 0.777
s [h] 7.9 5.8 7.2 8.0 6.6
F[i] 32.1 17.8 39.6 - 57.8

a2 il 0.696 0.78 0.701 0.658 0.743
Soress K] 9.3 6.5 - 8.7 6.3

[a] Ref. 26

[b]Ref. 27

[c] Ref. 28

[d]Ref. 29

[e] Number of complexes used in the training set.

[fl Number of terms in the scoring function

[g] Squared correlation coefficient given by regressional fitting.

[h] Standard deviation in regressional fitting, kJ/mol.

[i] Fisher significant ratio.

[i] Squared correlation coefficient given by leave-one-out cross-validation
[k] Standard deviation in leave-one-out cross-validation, kJ/mol

tion, and then give the dissociation constant of the given pptex structues. W\hen it was applied to the test set, which
tein-ligand complex. The whole computing process for ogentains 11 endothiapepsin complexes, the standard error of
complex is typically within a second on a SGI O2/R100G#rediction was only 3.2 kJ/mol. It will be naive to expect our
workstation. The computational results are output into a tekinple empirical scoring function to supplant other theoreti-
file in which the detailed information of each ligand atontally rigorous and computational exhaustive methods like
including the atomic binding score, is tabulated. Atomic bineEEP. But estimating the absolute dissociation constant of a
ing scores are also written into the MOL2 file which storgsotein-ligand complex with an average error of approxi-
the ligand structure so that the user can observe themndiitely one magnitude is already a significant improvement
rectly in the SYBYL graphic interface. In addition, we clader structure-based drug design schemes. Since our scoring
sify ligand atoms into different built-in atom sets in the MOLfinction can be calculated on the fly, it could be incorpo-
file in terms of their atomic binding scores: a ligand atomated into database searchingdernovodesign programs in
with a binding score higher than 0.10 units is defined afich usually thousands of candidate compounds have to be
“GOOD”; a ligand atom with a binding score lower than ranked in a relatively short time. After necessary modifica-
0.10 units is défied as “B\D”; while a ligand atom other- tion, it may also has potential application to other studies,
wise is deihed as“NEUTRAL”. These atom sets can besuch as molecular docking, host-guest chemistry, and pro-
viewed in different colours in SYBYL (see Figusg This tein engineering.

makes the interpretation of protein-ligand interaction possi- Our original motive of this study is to develop a scoring
ble in a more straightforward manner. function for use specifically in protein-ligand binding affin-

ity estimation rather than borrow a functional description from
another branch of computational chemistry. There are sev-
eral features of our method which deviate from molecular
mechanics-based functions. First, we bypass the need for
hydrogen atoms in computation. It is because exhaustive
minimisation of the crystalline structure is usually needed to
release the internal steric repulsion after adding hydrogen
atoms and the placement of hydrogen atom on rotatable ter-

the binding affinity of a protein-ligand complex with knowl'wnal group, such as hydroxyl group, is still a head-aching

three-di ional struct It imol ing f roblem. Therefore weonsider hydrogen atoms implicitly
ree-dimensional structure. it uses a simp'é scoring uije~,q heavy atoms to which they attach and the computa-

tion to capture the essential physics of the binding proces :
) ; o al results demonstrate that this strategy works. Second,
The final model achieved a standard deviation of 6.3 kJ/ choose to use “soft’ potentials to avoid the over-sensitiv-

in the leave-one-out cross-validation analysis of 170 €Ol to precise atomic positions. Therefore our scoring func-

Discussion

A state-of-the-art solution

We have presented a new empirical method for estimat
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Figure 5 lllustration of
atomic binding score: good
atoms in green; bad atoms in
red; while neutral atoms in
blue. (L-benzylsuccinate
bound to carboxyp#idase A,
PDB entry 1CBX)

tion can tolerate small uncertainties in the coordinates duq

; S lecul ling. TH set? hese questions actually trouble every researcher
the experimental determination or mozecular modeling. o works on an empirical model and, unfortunately, we have
feature may be helpful for a practical structure-based dr,

H& found any validation method reported yet to answer these
design procedure. Third, although we used to include a t y P y

L . . I stions.
to calculate the “electrostatic interaction” by using traditional’ pq qescribed in thilethodssection. we have proposed a

Coulomb equation, we found that it is simply unnecessggy,, nrocedure in an attempt to answer these questions. In
for our scoring function. Thus we skip prieatic iSsues g,ch 5 procedure, the same model is tested by performing
such as selection of partial charge set and dielectric behaysassions on randomly constructed data sets. When the size
iour, both of which remain subjective. Fourth, we have usgghin e jata set increases continuously, conclusions can be
a new VDW radius set which is probably the first one devefz,yn from the tendencies observed in the regressional re-
oped specially for binding affinity estimation. The VD.W.ra'uIts obtained along this procedure. This procedure simulates
dius set from AMBER has S?r"ed as a good start point In g process in which a researcher is able to use larger and
development of our scoring function. But since it i, qer gata sets to train his model. That is the reason why we

parameterized against an endpoint different from ours, WA this procedure “EvolutionaryeEt’. Theidea embedded

expect that some optimisation on this set will help to inly ,ch 5 procedure is: we do not know what it will be; but

prove the esult. Asour compgta’iional results have Showny e can make a reasonable prediction by checking what it has
the improvement is not marginal. been. An ideal empirical model will have such features in an

Compared to other similar approaches [26-29], we ha¥Go| tionary Test: first, its predictive ability should increase

obtained better statisticaésults. As shown in Table 6, oulit the increase in the size of the data set; second, the coef-

scoring function achieves the best regr.es'sior.lal significaﬁl fents in the model should converge to certain values in-
(F value) and the smallest standard deviation in cross-validgs, g of fluctuating randomly all the time. If a point of con-
tion (Spresgd- This may be the result of using a larger tra'n'r\%ggence is observed after which the predictive ability of the

set (as discussed in next section) as well as adopting el under investigation does not improve significantly any
methods to calculate hydrogen bonding and hydrophobic g e “it hrobably means that the data set at that point is al-

fect during the protein-ligand bindingquess. While giving e,y |arge enough for the model under investigation and

better results, our scoring function still maintains its cof;,,s the attempt of using a larger training set is not neces-
ciseness. No structure minimisation or additional treatm

is needed before calculating the binding affinity of the com-

. dur scoring function behaves in the Evolutionary Test just
plex. This feature lends much convenience to SCORE's usgr g Y )

we have expected. As one can see in Figure 4a and Figure
4b, the regressional fitting of our scoring function decreases
with the increase in the size of the data set. This is not sur-
prising considering that the function is the same while the
. . diversity of the data set is increasing. However, the predic-
All empirical methods have to use a training set and thefge ability of the function, which is tested by cross-valida-
fore they suffer from it: the content of the training set wifjon and the test set, keeps increasing with the increase in the
influence the final model. The influence could be vital espgye of gata set. It indicates that the scoring function does get
cially when the training set is not large and diverse enougRyier trained by using larger data sets and therefore the use

However, how can one know whether the training set is lafgeie current training set in our study is absolutely neces-

enough for the model he is studying? And, how can one kngy, ‘1 addition, the coefficients of each term in our scoring

whether his model will be stable if he could use a larger train-

Evolutionary test of an empirical model
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function are generally coherent and tend to converge to cerdn fact, step (2) to step (6) form a cycle of virtual lead
tain values along this procedure (see Table 5). Based on tliggenisation on the computer. This will help to save labour
results, we can come to the conclusion that our scoring fuane cost in the following experiment step and thus improve
tion is a robust, self-consistent empirical model. But we jube overall efficiency of the drug discoveryopess. A com-
cannot neglect that, although the size of data set has f#®r program that can automatically perform the virtual lead
significant influence after it exceeds 100-120, a convincibdgtimisation is currently under development in our lab.
convergence has not achieved yet. According to the tendency

observed so far, a training set consisting of approximately

200-250 'proteln-llgand complexes will be ideal for our SCO%onclusions

ing function.

In this paper, we have presented the development of an em-
Atomic binding score pirical scoring function for use in structure-based drug de-
sigh schemes with emphasis on robustness over structural

Predicting the absolute binding affinity of a protein-ligandiVersity, accuracy in absolute binding affinity estimation,
complex at a reasonable level is certainly very useful, bupftd Speed of compuian. Termsused in the scoring func-
may not be enough. In a drug design procedure, medicifia are dews',ed.to capture the e'ssentlal energetics of the pro-
chemists also care for how to optimize a known lead cofin-ligand binding pcess. Theiial model is derived by
pound rather than merely know whether it is good or négdression of a large training set and yields promising results
The optimisation of the lead compound is usually intend_EQf both the training set and thg test set. The robustness and
to enhance the favourable interaction with the receptor dntgrnal consistency of the scoring function are demonstrated
diminish the unfavourable. This needs to identify the reldy & new validation procedure called Evolutionary Test. Com-
tionships between the binding affinity and the chemical str@red with other similar approaches, our method has improved
ture of the ligand and preferably evaluate them in a quantif3 auality of binding affinity prediction. Furthermore, with
tive way. the mtroductlpn of atomic b_lndlng score, our method pro-

Maybe the most attractive feature of our method is iMides a practlcal topl for rational optimisation of lead com-
ability of decomposing the binding affinity of the ligand t®0unds in a drug discovery process.

its target protein into the contribution of its component at- ) )
oms. As haing been described in thdethodssection, we Supplementary material available statementThe source

accomplish this by basing our algorithm entirely on atorf@de of the program, SCORE, is available by contacting the
addition. By checking the atomic binding score, one can G&hors-
a clear idea of whether a ligand atom is favourable to the ) o )
binding process and how much it affects (see Figure 5). PArknowledgments This work is financially supported by the
thermore, one can figure out why it is so by checking eaghi€nce and Technology Mstry of China. Wealso thank
energy term in the atomic binding score. This feature allok§ Daniel A. Gschwend for his generous offering of data.
the direct relationship between the binding affinity and the
structure of the ligand and is especially valuable for lead
optimisation in structure-based drug design. By using tReferences
program SCORE, we can propose the following multi-step
procedure for rational optimisation of lead compounds. 1. Kuntz, I.D.Sciencel992 257, 1078-1082.

(1) Get the complex structure of the known lead com: Kuntz, I.D.; Meng, E.C.; Schoichet B.Kcc. Chem. Res.
pound, either by experimental determination or molecular 1994 27, 117-123.
modeling. 3. Verlinde, C.L.; Hol, W.GStructure1994 2, 577-587.

(2) Subject the complex structure to SCORE to compue Meng, E.C.; Shoichet, B.K.; Kuntz, I.D. Comp. Chem.
the binding affinity. 1992 13, 505-524.

(3) Analyze SCORE's output and figure out the favous. Lauri, G.; Bartlett, P.Al. Comput.-Aided Mol. De$994
able and the unfavourable parts of the lead compound. 8, 51-66.

(4) Design derivatives by enhancing the favourable pargs, miller, M.D.; Kearsley, S.K.; Underwood, DJl.Comput.-
changing the unfavourable parts, or adding new functional Ajded Mol. Des1994 8, 153-174.

groups to gain additional interactions. o 7. Lawrence, M.C.; Davis,.@. Proteins.1992 12, 31-41.
(5) Model the complex structures of the derivatives kg, Nishibata, Y.; Itai, ATetrahedron1991, 47, 8985-8990.
molecular docking and energy minimisation. 9. B6hm, H.JJ. Comput.-Aided Mol. De4992 6, 61-78.

(6) Repeat step (2)(3)(4)(5) until the predicted binding. Gillet, V.J.; Johnson, A.P.; Mata J>Comput.-Aided Mol.
affinities of the designed compounds reach a satisfactory level.pes. 1993 7, 127-153.

(7) Organic synthesis and bioassay. 11. DeWitte, R.S.; Shakhnovich, EllAm. Chem. Sot996
(8) With the feedback from experiments, go to step (1) to 118 11733-11744.
start a new round of lead optimisation. 12.Luo,Z.; Wang,R.; Lai, L. J. Chem. Inf. Comput. Sci.

1996 36, 1187-1194.



394

13. Ajay; Murcko, M.AJ. Med. Cheml995 38, 4953-4967.

14.Kollman, PChem. Rev1993 93, 2395-2417.
15. Goodford, P.JJ. Med. Chem1985 28, 849-857.

16. Luty, BA.; Wasserman, Z.R.; Stouten, P.F.W.Comp.

Chem.1995 16, 454-464.

17.SansomC.E.; Wu, J.; Weber, |.TProtein Eng.1992 5,
659-667.

18. Holloway, M.K.; Wei, J.MJ. Med. Cheml1995 38, 305-
317.

19. Ortiz, A.R.; Pisabarro, M.T.; GagoJ-Med. Cheml995
38, 2681-2691.

20. Grootenhuis, P.D.J.; Galen, P.J.MA¢ta. Cryst.1995
D51, 560-566.

21.Horton, N.; LewisM.L. Protein Sci.1992 1, 169-181.

22.Bohacek, R.S.; McMétn C.J.Med.Cheml992 35, 1671-
1684.

23.Krystek, S.; Stouch, T.; NavotnyJIMol.Biol. 1993 234,
661-679.

24.Williams, D.H.; Searle, M.S.; Mackay, JAoc. Natl.
Acad. Sci. U.S.A1993 90, 1172-1178.

25.Weng, Z.; ¥jda, S.; Delisi, CProtein Sci.1996 5, 614-
626.

26.BO0hm, H.JJ. Comput.-Aided Mol. Ded994 8, 243-
256.

J. Mol. Model.1998,4

27.Head, R.D.; Smythe, M.L.; Oprea, TIl.Am. Chem. Soc.
1996 118 3959-3969.

28.Gschwend, D.A.; Good, A.C.; Kuntz, I..Mol. Recog.
1996 9, 175-186.

29. Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V;
Mee, R.PJ. Comput.-Aided Mol. De$997, 11, 425-445.

30.Bernstein, F.C.; Koetzle, T.F.; Williams, G.JB.Mol.
Biol. 1977, 112, 535-542.

31.SYBYL 6.3, Tripos Associates, Inc., 1699 S. Hanley Rd.,
St. Louis, MO 63144, U.S.A, 1996.

32.Wilson, A., EdInternational Tables for Crystallography
\Wl.C; KLUWER: London, 1992.

33.Wang, R.; Fu, Y,; Lai, LJ. Chem. Inf. Comput. Sdi997,
37, 615-621.

34.Nicklaus M.C.; Wang, S.; Dscoll, J.S.Bioorgan. Med.
Chem.1995 3, 411-428.

35. Sternberg, M.J.E.; Chickos, J2otein Eng1994 7, 149-
155,

36. Cornell, W.D.; Cieplak, P.; Bayly, CJ. Am. Chem. Soc.
1995 117, 5179-5197.

37.Davis, LHandbook of Genetic Algorithméan Nostrand
Reinhold, New York, NY, U.S.A., 1991.

J.Mol.Model. (electronic publication) — ISSN 0948-5023



