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Introduction

Three-dimensional structures of proteins, provided by ei-
ther X-ray crystallography or NMR spectroscopy, are be-
coming increasingly important in the design of novel drugs.
They have enabled medicinal chemists directly to inspect
those structural properties of a target protein that are essen-
tial for interacting with a ligand. This in principle allows for
the rationalisation of the design process which is referred to
as structure-based drug design [1-12]. In such a process,

new leads may originate from three-dimensional database
searching or so-called de novo methods. However, all these
approaches are limited by the accuracy with which the af-
finity of proposed ligands can be gauged. Since correct rank-
ing of putative ligands for synthesis is a prerequisite to a
useful strategy for drug design, there is a clear need for an
objective method that is able to predict the binding affinity
of a protein-ligand complex in a quantitative way.

Predicting the binding affinity of a ligand to its target
protein is still a scientific challenge at present. A compre-
hensive review of this area has been provided by Ajay and
Murcko [13]. With respect to the rigorous calculation of rela-
tive binding energies, substantial progress has been made
with free energy perturbation (FEP) [14] which is currently
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the only method that attempts to deal seriously with calcu-
lating ensemble averages and considers solvent molecules
explicitly. However, despite various approximations geared
towards performance enhancement, this method is computa-
tionally intensive and restricted to small molecular systems.
Therefore, it is less practical in drug design where the syn-
thetic chemists require fast feedback from the modeling de-
partment.

Another popular method for assessing protein-ligand bind-
ing is molecular mechanics. Following the pioneering idea
of Goodford [15], the interaction energy between the protein
and its ligand is calculated by a simplified, often grid-based
force field. Basic components may include steric and elec-
trostatic energies, sometimes supplemented by other terms
accounting for hydrogen bonding and solvation effects [16-
20]. The purely molecular mechanics-based method has been
applied widely to molecular docking studies which aim at
finding the bound conformation of the ligand. But for esti-
mating binding affinities, the success of such approaches
depends on the ability to define the set of ligands on which
predictions will be applied carefully.

More recently, empirical schemes have met with signifi-
cant interest. The basic assumption underlined in such ap-
proaches is that the overall binding free energy can be de-
composed into components. This can be written out concep-
tually by the following equation.
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The parameters in the equation are often determined from
binding data in a statistical manner. This kind of approach is
also referred to as “Master Equation” [13]. At the very be-
ginning, such approaches were also applied only to conge-
neric series [21-25]. As a breakthrough, Böhm was the first
who developed a general-purposed empirical function to de-
scribe the binding energy [26]. The free energy of binding
was written as the sum of terms including a constant repre-
senting overall rotational and translational entropy loss, a sum
over all hydrogen bonds formed, a sum over all ionic interac-
tions, the loss of lipophilic surface area upon binding, and
the number of torsions that are frozen. A linear equation was
obtained through regressional analysis of 45 protein-ligand
complexes and the equation seemed to have reasonable pre-
dictive ability in the example tested. A more complicated
procedure was reported by Head et al. who had examined 51
protein-ligand complexes using partial least squares regres-
sion and a neural network [27]. They developed a hybrid
model combining energetic considerations from molecular
mechanics and calculated molecular properties related to
desolvation and entropy loss upon the binding process. Simi-
lar empirical schemes are also reported by Gschwend et al.
[28] and Eldridge et al. [29] who have obtained scoring func-
tions by using much larger data sets. These approaches are of
course simplistic methods, but they could capture the essen-
tial physics of protein-ligand binding at modest computa-
tional cost. They have been proved valuable in screening da-

tabase hits and scoring molecules generated by de novo de-
sign programs.

In this paper, we present a new general-purposed empiri-
cal method, SCORE, for estimating the absolute binding af-
finity of a protein-ligand complex with known three-dimen-
sional structure. We try to accomplish two goals in this study:
(i) developing a fast, accurate, and robust scoring function
for structure-based drug design. We have used a linear em-
pirical scoring function to describe the binding free energy
in which new terms and parameters are used. The final model
was obtained by regressional analysis upon a training set,
which is the largest one yet reported, composed of 170 com-
plex structures. (ii) providing a practical tool to interpret the
interaction between the protein and its ligand. According to
our method, the binding affinity of the ligand can be decom-
posed to the contribution of individual atoms. Each ligand
atom gets a score, the called atomic binding score, indicat-
ing its role in the binding process. The introduction of the
atomic binding score allows the designer to inspect and
optimize the lead compound structure in a more rational way.

Methods and computation results

Training set

The training set used in this study comprises 170 protein-
ligand complexes (see Table 1). All the complexes were taken
from the Protein Data Bank (PDB) [30]. Since our interests
are concentrated on small non-covalently bound ligands, those
complexes containing covalently-bound ligands, complex lig-
ands (such as heme), and macromolecular ligands were
stripped out of the data set. More than seventy different kinds
of proteins are represented in this training set and all the struc-
tures are of high resolution (better than 3.2 Å). The experi-
mentally determined binding data were cited from the litera-
ture [26-29] and expressed in the negative logarithms of dis-
sociation equilibrium constants, i.e. pKd, for convenience.
The pKd values in this set range from 1.54 to 13.96, covering
over 12 orders of magnitude. We have not checked the bind-
ing data for differences in temperature or salt concentrations
during measurement.

Each complex in the training set was processed with the
SYBYL software [31] as follows. First, the ligand was ex-
tracted from the complex structure, assigned proper atom and
bond types, and written out as a separate file in MOL2 for-
mat. The remainding part of the complex, i.e. the protein,
was then written out to another file in PDB format. Water
molecules, metal ions, and other cofactors were left with the
protein and treated as part of it. No further structure minimi-
sation was performed on either the ligand or the protein. A
special note should be addressed here is that hydrogen atoms
are unnecessary in the structure because our algorithm, as
described below, considers heavy atoms only.
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Table 1  Training set used in SCORE

PDB pKd Resl. Protein/ligand

1aaq 8.40 2.5 HIV-1 protease/hydroxyethylene isostere
1abe 6.52 1.7 L-arabinose binding protein/L-arabinose
1abf 5.42 1.9 L-arabinose binding protein/D-fucose
1adb 8.40 2.4 alcohol dehydrogenase/CNAD
1adf 4.58 2.9 alcohol dehydrogenase/TAD
1apb 5.82 1.76 L-arabinose binding protein P254G/D-fucose
1apt 9.4 1.8 penicillopepsin/pepstatin analogue
1apu 7.49 1.8 penicillopepsin/IvaValValSta-OEt
1apv 9.00 1.8 penicillopepsin/IvaValVal(H)Dfo-N-methylamide
1apw 8.00 1.8 penicillopepsin/IvaValValDfo-N-methylamide
1bap 6.85 1.75 L-arabinose binding protein P254G/L-arabinose
1bra 1.82 2.2 trypsin mutant/benzamidine
1cbx 6.35 2.0 carboxypeptidase A/L-benzylsuccinate
1cla 5.28 2.34 chloramphenicol acetyltransferase/chloramphenicol
1cps 6.66 2.25 carboxypeptidase A/CPM
1csc 7.10 1.7 citrate synthase/carboxymethyl coenzyme A
1csc 1.62 1.7 citrate synthase/L-malate
1dbb 9.00 2.7 DB3/progesterone
1dbj 7.68 2.7 DB3/aetiocholanolone
1dbk 8.09 3.0 DB3/5-b-androstanedione
1dbm 9.44 2.7 DB3/progesterone analogue
1dhf 7.4 2.3 DHFR/folate
1dih 5.74 2.2 dihydrodipicolinate R/NADPH
1dr1 5.57 2.2 dihydrofolate reductase/biopterin
1drf 7.44 2.0 dihydrofolate reductase/folate
1dwb 2.90 3.16 thrombin/benzamidine
1dwc 7.41 3.0 thrombin/MD-805
1dwd 8.18 3.0 thrombin/NAPAP
1ebg 10.82 2.1 enolase/phosphonoacetohydroxamate
1etr 7.41 2.2 thrombin/MQPA
1ets 8.22 2.3 thrombin/NAPAP
1ett 6.19 2.5 thrombin/4-TAPAP
1fbc 6.26 2.6 fructose-1,6-bisphosphatase/2,5-anhydroglucitol-1,6-bisphosphate
1fbf 6.00 2.7 fructose-1,6-bisphosphatase/2,5-anhydromannitol-1,6-bisphosphate
1fbp 4.82 2.5 fructose-1,6-bisphosphatase/AMP
1fkb 9.70 1.7 FK506 binding protein/rapamycin
1fkf 8.77 1.7 FK506 binding protein/FK506
1gst 4.68 2.2 glutathione S-transferase/glutathione
1hbv 6.37 2.3 HIV-1 protease/SB-203238
1hpv 9.22 1.9 HIV-1 protease/VX-478
1hsl 7.30 1.89 histidine binding protein/Histidine
1htf 8.09 2.2 HIV-1 protease/GR-126045
1htg 9.68 2.0 HIV-1 protease/GR-137615
1hvi 10.07 1.8 HIV-1 protease/A-77003
1hvj 10.45 2.0 HIV-1 protease/A-78791
1hvk 10.11 1.8 HIV-1 protease/A-76928
1hvl 9.00 1.8 HIV-1 protease/A-76889
1hvs 10.08 2.25 HIV-1 protease V82A/A-77003
1l83 3.40 1.70 lysozyme/benzene
1ldm 5.44 2.1 M4 lactate dehydrogenase/NAD
1lgr 3.07 2.8 glutamine synthetase/AMP
1lyb 11.42 2.5 cathepsin D/pepstatin
1mcb 4.84 2.7 immunoglobulin/peptide
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Table 1 Training set used in SCORE (continued)

PDB pKd Resl. Protein/ligand

1mcf 5.15 2.7 immunoglobulin/peptide
1mch 5.15 2.7 immunoglobulin/peptide
1mcj 3.78 2.7 immunoglobulin/peptide
1mcs 4.84 2.7 immunoglobulin/peptide
1mdq 5.10 1.9 maltose binding protein A301GS/maltose
1mfe 5.31 2.0 immunoglobulin/D-gal-D-abe-D-man
1mnc 9.00 2.1 neutrophil collagenase/hydroxamate
1nnb 5.30 2.8 neuraminidase/DANA
1phh 7.35 2.3 p-hydroxylbenzoate hydroxylase/FAD
1pgp 5.70 2.5 6-PGDH/6-phosphogluconic acid
1ppc 6.16 1.8 trypsin/NAPAP
1pph 6.22 1.9 trypsin/3-TAPAP
1ppk 7.66 1.8 penicillopepsin/phospho analogue
1ppl 8.55 1.7 penicillopepsin/IVA-VAl-VAl-LEU-P-(O)PHE-OME
1ppm 5.80 1.7 penicillopepsin/CBZ-ALA-ALA-LEU-P-(O)PHE-OME
1rbp 6.72 2.0 retinol binding protein/retinol
1rne 8.70 2.4 renin/CGP-38560
1rnt 5.18 1.9 ribonuclease T1/2'-GMP
1rus 3.08 2.9 rubisco/3-phosphoglycerate
1snc 6.70 1.65 staphylococcal nuclease/deoxythymidine 3',5'-bisphosphate
1tha 5.35 2.0 transthyretin/3,3'-diiodo-L-thyronine
1tlp 7.56 2.3 thermolysin/phosphoramidon
1tmn 7.47 1.9 thermolysin/N-(1-carboxy-3-phenyl)-L-LeuTrp
1tmt 6.24 2.2 thrombin/D-Phe-Pro-Arg
1tng 2.93 1.8 trypsin/aminomethylcyclohexane
1tnh 3.37 1.8 trypsin/4-fluorobenzylamine
1tni 1.70 1.9 trypsin/4-phenylbutylamine
1tnj 1.96 1.8 trypsin/2-phenylethylamine
1tnk 1.49 1.8 trypsin/3-phenylpropylamine
1tnl 1.88 1.9 trypsin/t-2-phenylcyclopropylamine
1ulb 4.40 2.75 PNP/guanine
1xli 1.48 2.5 D-xylose isomerase/5-thio-alpha-D-glucose
2ak3 3.86 1.9 adenylate kinase isoenzyme-3/AMP
2cgr 7.27 2.2 immunoglobulin/GAS
2csc 3.36 1.7 citrate synthase/D-malate
2ctc 3.89 1.4 carboxypeptidase A/L-phenyl lactate
2dbl 8.70 2.9 DB3/pregnane analogue
2dri 6.52 1.6 D-ribose binding protein/b-D-ribose
2gbp 7.40 1.9 galactose binding protein/galactose
2ifb 5.44 2.0 fatty acid binding protein/C15COOH
2ldb 4.15 3.0 L-lactate dehydrogenase/NAD+
2mcp 4.70 3.1 immunoglobulin/phosphocholine
2phh 3.36 2.7 PHBH/ADP ribose
2phh 4.60 2.7 PHBH/p-hydroxybenzoic acid
2pk4 4.32 2.25 plasminogen kringle 4/aminocaproic acid
2r04 6.22 3.0 virus coat protein/compound 4
2rnt 3.78 1.8 ribonuclease T1 K25/guanylyl-2',5'-guanosine
2sns 6.70 1.5 staphylococcal nuclease/2'-deoxy-3',5'-diphosphothymidine
2tmn 5.89 1.6 thermolysin/N-phosphory-L-leucinamide
2xim 2.28 2.3 D-xylose isomerase K253R/xylitol
2xis 5.82 1.71 xylose isomerase/xylitol
2ypi 4.82 2.5 TIM/phosphoglycolic acid
3cla 4.94 1.75 chloramphenicol acetyltransferase/chloramphenicol
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Table 1 Training set used in SCORE (continued)

PDB pKd Resl. Protein/ligand

3cpa 4.00 2.0 carboxypeptidase A/GT
3csc 5.15 1.9 citrate synthase/acetyl coenzyme A
3csc 2.64 1.9 citrate synthase/L-malate
3fx2 9.3 1.9 flavodoxin/FMN
3gap 5.00 2.5 catabolite gene activator protein/cAMP
3pgm 3.19 2.8 phosphoglycerate mutase/phosphoglycerate
3ptb 4.50 1.7 trypsin/benzamidine
3tmn 5.90 1.7 thermolysin/ValTrp
4cla 5.47 2.0 chloramphenicol acetyltransferase/chloramphenicol
4dfr 8.62 1.7 DHFR/methotrexate
4fab 8.05 2.7 IgG kappa Fab 4-4-20/fluorescein dianion
4gr1 2.20 2.4 glutathione reductase/retro-GSSG
4hvp 6.11 2.3 HIV-1 protease/MVT-101
4mdh 3.23 2.5 cytoplasmic malate/NAD+
4phv 9.17 2.10 HIV-1 protease/L-700417
4sga 3.27 1.8 proteinase A/Ace-Pro-Ala-Pro-Phe
4tim 2.16 2.4 triosephosphate isomerase/2-phosphoglycerate
4tln 3.72 2.3 thermolysin/Leu-NHOH
4tmn 10.17 1.7 thermolysin/ZFpLA
4ts1 5.61 2.5 Tyrosyl-transfer RNA synthetase/tyrosine
4xia 1.54 2.3 D-xylose isomerase/D-sorbitol
5abp 6.64 1.8 ABP/D-galactose
5acn 2.80 2.1 aconitase/tricarballylic acid
5cna 2.00 2.0 concanavalin A/a-Me-D-mannopyranoside
5enl 3.8 2.2 enolase/2-phospho-D-glycerate
5hvp 7.46 2.0 HIV-1 protease/acetylpepstatin
5icd 5.29 2.5 isocitrate dehydrogenase/isocitrate
5ldh 2.82 2.7 lactate dehydrogenase/isocitrate
5p21 5.32 1.35 ras p21 protein/GPPNP
5sga 2.85 1.8 proteinase A/Ace-Pro-Ala-Pro-Tyr
5tim 2.30 1.83 triosephosphate isomerase/DTT
5tln 6.37 2.3 thermolysin/INA
5tmn 8.04 1.6 thermolysin/ZGp(NH)LL
5xia 2.60 2.5 D-xylose isomerase/xylitol
6abp 6.36 1.67 L-arabinose binding protein M108L/L-arabinose
6apr 7.77 2.5 rhizopuspepsin/pepstatin
6cpa 11.52 2.0 carboxypeptidase A/ZAAp(O)F
6enl 3.0 2.2 enolase/phosphoglycolic acid
6rnt 2.37 1.8 ribonuclease T1/2'-AMP
6tim 3.21 2.2 triosephosphate isomerase/glycerol-3-phosphate
6tmn 5.05 1.6 thermolysin/ZGp(O)LL
7abp 6.46 1.67 L-arabinose binding protein M108L/D-fucose
7acn 4.31 2.0 aconitase/isocitrate
7cat 8.00 2.5 catalase/NADPH
7cpa 13.96 2.0 carboxypeptidase A/BZ-FVP(O)F
7dfr 4.96 2.5 DHFR/folate
7dfr 6.10 2.5 DHFR/NADP+
7est 7.60 1.8 elastase/TFAP
7hvp 9.62 2.4 HIV-1 protease/JG-365
7tim 5.40 1.9 triosephosphate isomerase/phosphoglycolohydroxamate
7tln 2.47 2.3 thermolysin/CH2CO-Leu-OCH3
8abp 6.60 1.49 L-arabinose binding protein M108L/D-galactose
8acn 7.14 2.0 aconitase/nitroisocitrate
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Table 1 Training set used in SCORE (continued)

PDB pKd Resl. Protein/ligand

8atc 7.57 2.5 aspartate carbamoyltransferase/PALA
8cpa 9.15 2.0 carboxypeptidase A/BZ-AGP(O)F
8hvp 9.00 2.5 HIV-1 protease/U-85548E
8icd 3.02 2.5 isocitrate dehydrogenase/isocitrate
8xia 2.95 1.9 D-xylose isomerase/D-xylose
9aat 8.22 2.2 aspartate aminotransferase/pyridoxal-5'-phosphate
9abp 8.00 1.97 L-arabinose binding protein P254G/D-galactose
9hvp 8.35 2.8 HIV-1 protease/A-74704
9ldt 5.43 2.0 lactate dehydrogenase/NADH
9ldt 4.74 2.0 lactate dehydrogenase/oxamate
9rub 4.70 2.6 rubisco/ribulose-1,5-bisphosphate

Scoring function

We assume that the free energy change in the protein-ligand
binding process can be dissected into basic components. Our
scoring function takes the following form.

pK K K K K

K K
d vdw metal hbond

desolvation deformation

= + + +
+ +

0
(1)

Here, Kvdw represents the contribution of van der Waals inter-
action between the protein and its ligand, Kmetal the contribu-
tion of metal-ligand bonding, Khbond the contribution of hy-
drogen bonding, Kdesolvation the contribution of desolvation
effect, and Kdeformation the contribution of deformation. K0 is
the regression constant which may contain the translational
and rotational entropy loss upon the binding process.

(1) Van der Waals (VDW) interaction. This kind of interac-
tion is a balance between attractive dispersion force and short-
range repulsion. Although it is well accepted that van der
Waals interactions play a fundamental role in the binding of
the protein and its ligand, arguments exist in how to repre-
sent it in calculating the binding affinity. Some researchers
assume that protein-ligand, protein-solvent, and ligand-sol-
vent interfaces are well packed and hence neglect any change
in the VDW interactions upon binding. Some others assume
that VDW interactions are better in a complex and therefore
explicitly include them. By analyzing the training set, we
believe that they all tell only part of the story. In general, one
will find a closely packed interaction interface in a protein-
ligand complex where many atom pairs are in a distance much
shorter than the sum of their VDW radii, i.e. they form VDW
bumps. Not all of these bumps come from hydrogen bonding
or other strong interactions. Some of them are just the result
of the tight binding between other parts of the protein and its
ligand. It is not reasonable to assume that such a situation
can also be found on the protein-solvent or ligand-solvent
interface where the water molecules are mobile. Thus, our
conclusion is that the VDW attraction between the protein

and its ligand can be neglected due to the competitive inter-
action with water in the unbound state while the VDW repul-
sion cannot.

In our algorithm, the term for VDW interaction is simply
a pairwise counting of VDW bumps between the protein and
the ligand,

( )K VB dvdw ij

ji

= ∑∑ (2)

VB (dij ) = 1 dij  < ri + rj – 0.60Å
= 0 dij  ≥ ri + rj – 0.60Å

where ri is the VDW radius of ligand atom i and rj is the
VDW radius of protein atom j; dij is the distance between
atom i and j.

(2) Metal-ligand bonding. A variety of proteins have metal
cations in their active sites, such as Mg2+, Ca2+, Mn2+, and
Zn2+. In such cases, coordinate bonding between the metal
and the ligand can often be important for the  stability of the
complex. In our algorithm, the metal cation in the active site
is treated as part of the protein and metal-ligand bonding is
distinguished from hydrogen bonding. By browsing the In-
ternational Tables for Crystallography [32], we find that, in
common coordinate compounds, most of Mg/Ca/Mn/Zn ...
O/N bonds lengthen between 1.9Å to 2.2Å. As an approxi-
mation, the ideal bond length of a metal ... O/N bond is set to
2.0Å in our algorithm and a distance function is used to ac-
count for the deviation from the ideal value,

MB (d) = 1.0 d < 2.0Å
= 3.0 - d 2.0Å ≤ d < 3.0Å
= 0 3.0Å ≤ d

where d is the metal ... O/N bond length. The cutoff of 3.0Å
comes from the observation that there is no metal-ligand bond
longer than this in the entire training set.

The term for metal-ligand bonding in our algorithm is the
sum over all metal-O/N bonds,
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( )K MB dmetal ij
ji

= ∑∑ (3)

where dij  refers to the distance between ligand atom i and
metal j. We do not differentiate the types of metal ... O/N
bonds so that no weight factor is needed.

(3) Hydrogen bonding. Hydrogen bonding is no doubt one
of the key features for a specific binding process. Such inter-
action may happen when two atoms get close enough and
form a donor-acceptor pair. In our algorithm, a hydrogen bond
donor is defined as a nitrogen or oxygen atom with hydrogen
attached; while an acceptor is defined as a nitrogen, oxygen,
or fluorine atom with at least one vacant valence to accept a
hydrogen atom. Accordingly, all the atoms on the protein
and the ligand are labeled as either donor (D), acceptor (A),
donor/acceptor (DA), or none (N).

The geometry of a hydrogen bond is characterized by two
parameters: the bond length, i.e. the distance between D and
A, and the bond angle, i.e. the angle among D-H …A. The
calculation of the former is straightforward. We define that a
hydrogen bond is possible only when the bond length is shorter
than the sum of VDW radii of D and A. However, the calcu-
lation of the bond angle is of some difficulty since we avoid
the explicit use of hydrogen atoms in the structure. To cir-
cumvent this problem, we use two other angles involving only
heavy atoms instead. They are computed among X-D…A and
D…A-X, where X represents the adjacent heavy atom or, if
there are more than one adjacent atom, their geometric cen-
tres. We have investigated the distribution of these two an-
gles among all typical kinds of hydrogen bond and found
that they are not likely to be lower than 70 degrees for a
plausible hydrogen bond. Thus, an angle cutoff is set in our
algorithm for defining a hydrogen bond: if either of these
two angles is lower than 70 degrees, the geometry of the do-
nor-acceptor pair under investigation is poor and therefore
overlooked. In the case of water-involved hydrogen bond in
which water has no adjacent heavy atom, only the possible
angle is used in judgement.

In other empirical methods [26], the distance dependence
of hydrogen bonding strength is gauged typically by using a
linear distance function which decreases from 1 to 0 in a
certain range. Such definition is rather subjective since hy-
drogen bonding need not behave in such a simple and ideal
manner. In our algorithm, a step function is used instead. We
define,

SHB (d) = 1 d < d0 - 0.60Å
= 0 otherwise

MHB (d) = 1 d0 - 0.60Å ≤ d < d0 – 0.30Å
= 0 otherwise

WHB (d) = 1 d0 – 0.30Å ≤ d < d0
= 0 otherwise

where d represents the distance between D and A; d0 repre-
sents the sum of VDW radii of D and A. SHB, MHB, and

WHB are indicators for strong, moderate, and weak hydro-
gen bond respectively. In addition, because of the specificity
of water-involved hydrogen bond, we use another three indi-
cators defined in the same way

SWH (d) = 1 d < d0 - 0.60Å
= 0 otherwise

MWH (d) = 1 d0 - 0.60Å ≤ d < d0 – 0.30Å
= 0 otherwise

WWH (d)= 1 d0 – 0.30Å ≤ d < d0
= 0 otherwise

to represent strong, moderate, and weak water-involved hy-
drogen bond respectively. The contribution of the six terms
above will be determined by regression and therefore the use
of an imagined distance function is avoided.

The angular dependence of hydrogen bonding strength
proved to be another problem. In our method, we do not use
a function to account for this for two reasons. First, it is diffi-
cult to design such a function. Many researchers, including
us, have investigated the distribution of hydrogen bond angle
by analyzing various databases of small molecules or macro-
molecules. The general conclusion is that, although some
kinds of hydrogen bonds tend to favour certain orientations,
there is usually a wide distribution in hydrogen bond angles.
Thus, it seems quite unpractical to using one angular func-
tion to deal with all kinds of hydrogen bonds. Second, it may
not be necessary to design such a function. In fact, there is
not enough experimental evidence to explain how a hydro-
gen bond acts if its angle deviates from the “ideality”. There-
fore, it is not surprising that there is no standard method to
gauge the angular dependence of hydrogen bonding strength
at present. We have tried some simple-formed angular func-
tions while developing our model. However, such attempts
were proved to help little.

In our method, the contribution of hydrogen bonding is
the sum over all hydrogen bonds formed between the protein
and its ligand.

( ) ( )
( ) ( )
( ) ( )

K K K K K K K

SHB d MHB d

WHB d SWH d

MWH d WWH d

hbond SHB MHB WHB SWH MWH WWH

ij
ji

ij
ji

ij
ji

ij
ji

ij
ji

ij
ji

= + + + + +

= +

+ +

+ +

∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

(4)

Here, we do not differentiate the types of hydrogen bonds so
that no weight factor is needed.

(4) Desolvation effect. Since both the protein and its ligand
are solvated before complexation, the protein-ligand binding
process is accompanied by desolvation, which undergoes
changes in entropy as well as in enthalpy. This kind of effect
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is very difficult to characterize accurately. Both the long-
range “hydrophobic effect” and specific hydrogen bondings
of water could be important in elucidation. These features
make it unamenable to simple additive pairwise interactions.
So far this effect is typically measured by calculating the
buried hydrophobic surface areas during the binding process
[26-29]. However, several defects lie in such approaches: (i)
polar and non-polar atoms are differentiated by very coarse
definitions; (ii) the choice of solvent accessible surface or
molecular surface seems to depend totally on the research-
er’s intuition; (iii) it is not always clear which buried surface
should be calculated, (a) only the protein, (b) only the lig-
and, or (c) both the protein and the ligand; (iv) accurate, ana-
lytical algorithm for calculating the surface is impossible.
Numerical integration has to be used as an approximation.

We have adopted a different method to measure the
desolvation effect, which is simple and explicit. First, each
atom is assigned a quantitative scale to represent its
hydrophobicity. In a previous paper [33], we have reported a
method, XLOGP, to calculate the octanol/water partition co-
efficient for an organic compound. The basic idea was that
the logP value of the whole molecule could be expressed as
the summation of atomic contributions. The contributions of
different atom types were derived from the regression analy-
sis of a large set of compounds. These parameters are there-
fore transplanted into this study as the atomic hydrophobic
scales: the more positive the value, the more hydrophobic is
the atom; and the more negative the value, the more hy-
drophilic is the atom. In our algorithm, an atom is consid-
ered as hydrophobic when its hydrophobic scale is larger than
0.20 units. Second, the “environment” of a ligand atom is
defined as the assembly of all the neighbouring protein at-
oms within 5Å. The hydrophobicity of the environment is
expressed by the sum of the hydrophobic scales of all the
protein atoms forming the environment. If the sum is posi-
tive, the ligand atom is considered to be in a hydrophobic
environment, otherwise it is considered to be in a hydrophilic
environment. Therefore, in principle there will be four situa-
tions: a hydrophilic ligand atom in a hydrophilic environ-
ment, a hydrophilic ligand atom in a hydrophobic environ-
ment, a hydrophobic ligand atom in a hydrophilic environ-
ment, and a hydrophobic ligand atom in a hydrophobic envi-
ronment. In the first three situations, the lose of solvation
shell (desolvation) during binding is compensated more or
less by the interaction with a hydrophilic counterpart. Hence,
a significant change in the overall binding free energy is not
expected. However, in the last situation, perfect hydrophobic
matching forms and thus makes a favourable contribution to
the protein-ligand binding process.

In our algorithm, the term for desolvation effect is a sum
over all hydrophobic matchings between the protein and its
ligand,

K F HMHM i i

i

= ×∑ (5)

where HMi is an indicator of hydrophobic matching. It is set
to 1 if ligand atom i is hydrophobic and placed in a hydro-
phobic environment; otherwise it is set to 0. Fi is the atomic
hydrophobic scale of ligand atom i. It is used as a weight
factor here to meet the expectation that a more hydrophobic
atom may contribute more to the hydrophobic effect.

(5) Deformation effect. Deformation refers to the confor-
mational changes during the binding process. On one hand,
it causes adverse entropic changes due to the freezing of in-
ternal rotations of both the protein and its ligand; on the other
hand, it causes adverse enthalpic change due to the strain
energy exerted during binding. Based on the principles of
statistical thermodynamics, the entropic change is usually
estimated by using a constant value per rotatable bond that is
frozen. However, the enthalpic change is more difficult to
elucidate.

We have noticed that Nicklaus et al., in an informative
approach [34], found that the deformational enthalpy of the
ligand upon the binding process also correlates well with the
number of rotatable bonds. Therefore, as a simplification,
we use the number of rotatable bonds, i.e. rotors, as a dou-
ble-purposed parameter to estimate both the entropic and
enthalpic change in deformation. In our algorithm, the term
for the deformation effect is simply the number of rotors in
the ligand. If a rotor is split into halves and assigned onto the
two atoms involved, this term can also be written as,

K RTRT i

i

= ×∑0 5.
(6)

where RTi is the number of rotors in which ligand atom i is
involved. Rotor is defined as acyclic sp3-sp3 and sp3-sp2 sin-
gle bond. Rotations of terminal -CH3, -NH2, or -OH, whose
rotation do not produce any new conformation of heavy at-
oms are not taken into account. The flexibility of cyclic por-
tions of the ligand is ignored.

We have also tried to incorporate the deformation effect
of the protein into computation by simply counting the ro-
tors of the active site residues or using other protein side-
chain entropic scales [35]. But such attempts simply did not
help to improve the result. One possible reason is that, even
in the unbound state, the side chains of the active site resi-
dues are generally immobilized due to the stack of neigh-
bouring residues. Therefore in most cases, unlike the ligand,
the protein changes very little to accommodate the ligand.
Another reason may be that empirical parameters are too
rough to model  the deformation of the protein. Such behav-
iour needs to be modeled by more rigorous and exhaustive
dynamic simulations, which is definitely unpractical for a
fast empirical method. Thus, as an simplification, we neglect
the deformation effect of the protein during the binding proc-
ess in our method.

At this point, a summary of our scoring function should
be given. We compute the dissociation constant of a protein-
ligand complex by summing all the terms described above.
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There are a total of 11 adjustable parameters in this scoring
function. They will be given by the regressional analysis of
the entire training set.

According to our algorithm, all the terms in the scoring
function can be computed on the sum over the contribution
of ligand atoms. After simple linear transformation, the func-
tion can be rewritten as following,

( )
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K K

d VB RT

VB i RT i
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in which the binding affinity of the whole ligand is expressed
as the addition of the contributions of each ligand atom. We
call Ki the atomic binding score. It characterizes the role of
an individual ligand atom during the binding process in a
quantitative way. Its potential application will be discussed
later in this paper.

VDW radius set

As described above, we use VDW radii in the calculation of
VDW bump and hydrogen bonding. Since each force field
has its own set of VDW radii, making a choice among them
is rather a subjective issue. When developing our scoring func-
tion, we originally adopted the VDW radius set from the
AMBER force field [36] as it is well established for mod-
eling macromolecules. By using this set of VDW radii in the
scoring function, we obtained promising results in the
regressional analysis of the training set. But since the AM-
BER force field is parameterized to reproduce internal prop-
erties, such as conformation, dipole moment, and heat of for-
mation, we believe that some optimisation on this VDW ra-
dius set is necessary for the purpose of binding affinity esti-
mation. We optimized it by applying a Genetic Algorithm
(GA) [37].

In a GA procedure, potential solutions to the problem be-
ing studied are represented as data structures called chromo-
somes. For our problem, a real-value string chromosome is
used. We adopt 22 atom types defined in the Tripos force
field to classify carbon, oxygen, nitrogen, sulfur, phosphor,
and halogens (see Table 2). A chromosome thus contains 22
elements to represent the VDW radii for all the atom types.
For each chromosome, regressional fitting of the whole train-
ing set is done by using Equation 7 and the VDW radius set
the chromosome represents. The fitness of the chromosome
is given the value of the squared correlation coefficient there-Figure 1 The best fitness observed among the whole popu-

lation along a GA procedure

Table 2 Atom types and VDW radii used in SCORE

Symbol Description radius (Å)

C.3 sp3 hybridized carbon 1.94
C.2 sp2 hybridized carbon 1.90
C.1 sp hybridized carbon 1.90
C.ar aromatic carbon 1.85
O.3 sp3 hybridized oxygen 1.74
O.2 sp2 hybridized oxygen 1.66
O.w water oxygen 1.77
N.3 sp3 hybridized nitrogen 1.87
N.2 sp2 hybridized nitrogen 1.86
N.1 sp hybridized nitrogen 1.86
N.ar aromatic nitrogen 1.86
N.am amide nitrogen 1.83
N.pl3 trigonal planar nitrogen 1.86
S.3 sp3 hybridized sulfur 2.09
S.2 sp2 hybridized sulfur 2.01
S.o sulfoxide sulfur 2.01
S.o2 sulfone sulfur 2.01
F fluorine 1.77
Cl chlorine 2.00
Br bromine 2.22
I iodine 2.42
P phosphor 2.03
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fore obtained in the regression. Thus, an ideal chromosome
will have the fitness of 1.00. In this way, each chromosome
is directly evaluated according to its ability to reproduce the
binding affinities of the training set. The GA operators used
in our study include mutation and crossover. Here, mutation
is a single-point mutation, i.e. only one randomly selected
element in the chromosome is changed by a certain amount.
The amount is designed to be a random number in the
Gaussian distribution with zero mean and a variance of 0.02Å.
Mutation requires one parent chromosome and produces only
one child. Crossover is also a single-point crossover, i.e. a
position along the chromosome is selected at random and all
the elements subsequent to the chosen position are then
swapped over between the two chosen chromosomes. Crosso-
ver requires two parent chromosomes and produces two chil-
dren.

An initial population of chromosomes is generated by
mutation on the original AMBER VDW radius set. After gen-
erating the initial population, the GA then runs in cycles.
Roulette-wheel selection is used to choose parents for pro-
ducing new members for the next generation. It works by
giving each member of the population a slice of the wheel,
the size of the slice being proportional to the fitness of the
member. In this way, when the wheel is spun, a fitter mem-
ber will be more likely to be chosen than a less fit member.
We adopt steady-state-with-no-duplicates strategy in our GA
procedure. In each cycle, a new chromosome is produced
either by mutation or crossover on the selected parent. After
duplicate check, it is compared with the worst member of the
existing population. If the new one is better, it becomes a
member of the population and the original worst one is dis-
carded; if not, the new one is discarded and GA goes into
next generation with the population unchanged. This process
is repeated until a pre-set limit of generation is reached.

We ran the above GA procedure with a population size of
100, a generation limit of 1500, a mutation rate of 0.50, and
a crossover rate of 0.50. During the procedure, we recorded
the average and the best fitness of the whole population. Be-
cause of the nature of GA, the procedure has been run a
number of times to find the best solution to the problem. A
typical run is shown in Figure 1 in which the best fitness of
the population has been optimized from 0.754 to 0.777. In

Figure 2 The correlation between the experimental and cal-
culated pKd values of 170 complexes in the training set

fact all the runs could optimize the average and the best fit-
ness of the population to approximately the same level. The
best set of VDW radii found among all solutions is listed in
Table 2. All the values in this set seem to be reasonable and,
since hydrogen is bypassed in the computation, they can be
considered as the radii for united atoms. This VDW radius
set is adopted in following computations.

Regression

Using Equation 7, standard multivariate regression was per-
formed on the whole training set. It yielded a squared corre-
lation coefficient (r2) of 0.777, a standard deviation (s) of
1.16 log units, which corresponds to 6.6 kJ/mol in binding

Term  description Coefficient [a]

(1) VDW bump (VB) -0.168 (±0.110)
(2) Metal-ligand bonding (MB)  0.916 (±0.580)
(3) Strong hydrogen bonding (SHB)  0.593 (±0.198)
(4) Moderate hydrogen bonding (MHB)  0.216 (±0.170)
(5) Weak hydrogen bonding (WHB)  0.141 (±0.125)
(6) Strong water-involved H-bonding (SWH)  0.291 (±0.259)
(7) Moderate water-involved H-bonding (MWH) -0.708 (±0.313)
(8) Weak water-involved H-bonding (WWH)  0.327 (±0.258)
(9) Hydrophobic matching (HM)  1.178 (±0.253)
(10) Rotor (RT) -0.169 (±0.081)
Regression constant  2.254 (±0.914)

Table 3 Coefficients of each
term in the final scoring func-
tion

[a] The value in brackets is
95% confidence interval
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free energy at room temperature, and a Fisher value F(10,159)
of 57.8. The coefficients of each term in the scoring function
are listed in Table 3. The correlation between the experimen-
tal and calculated pKd values of the training set is shown in
Figure 2.

A leave-one-out cross-validation was also performed on
the training set and yielded a squared correlation coefficient
(q2) of 0.743 and a standard deviation (sPRESS) of 1.10 log
units, which corresponds to 6.3 kJ/mol in binding free en-
ergy at room temperature. Here, q2 and sPRESS are defined as

( )
( )

q
y y

y y

pred obs

obs mean

2

2

2

1
=

− −

−
∑

∑ (9)

and
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( )s
y y

N kPRESS
pred obs

=
−

− −
∑ 2

1
(10)

where N represents the number of samples in the training set
and k represents the number of terms in the scoring function.

Test set

The true value of any empirical model lies in its predictive
ability. In this study, we have used 11 endothiapepsin com-
plexes as the test set (see Table 4). This set was chosen for
two reasons: first, there is no other endothiapepsin complex
in the training set; second, the ligands in these complexes are
peptides, which are generally larger and more flexible than
the ligands in the training set. Therefore, this test set tends to
be a real challenge.

Applying our scoring function to the test set yielded a
predictive squared correlation coefficient (

2
predr ) of 0.654 and

a standard deviation (spred) of 0.55 log units (3.2kJ/mol at
298K). The correlation between the experimental and pre-
dicted pKd values of the test set is shown in Figure 3.

Evolutionary test

We have designed a stepwise procedure, Evolutionary Test,
to confirm the robustness and the internal consistency of the
scoring function. This procedure was started from construct-
ing a data set of 30 complexes. The complexes were ran-
domly selected from the training set without duplicate. Then,
standard regression and leave-one-out cross-validation were
performed on this data set by using the scoring function. The
model thus obtained was also applied to the test set. To mini-
mize the coincidence in such analysis, the above process was
repeated 20 times and the average values of all the results,
including r2, s, q2, sPRESS, 

2
predr , spred, and the coefficients of

each term in the scoring function were recorded. The second
step of the procedure was constructing a larger data set of 40

Figure 3 The correlation between the experimental and cal-
culated pKd values of 11 endothiapepsin complexes in the
test set

PDB entry Resl. (Å) Protein/ligand Exp.[a] Pred.[b]

1eed 2.0 endothiapepsin/PD-125754 4.90 6.15
1epo 2.0 endothiapepsin/CP-81282 7.96 8.84
1epp 1.9 endothiapepsin/PD-130693 7.16 6.58
2er0 3.0 endothiapepsin/L-364099 6.40 7.86
2er6 2.0 endothiapepsin/H-256 7.22 6.99
2er7 1.6 endothiapepsin/H-261 9.00 8.67
2er9 2.2 endothiapepsin/L-363564 7.80 7.83
3er3 2.0 endothiapepsin/CP-71362 7.10 6.90
4er1 2.0 endothiapepsin/PD-125967 6.62 7.69
4er2 2.0 endothiapepsin/pepstatin 9.30 9.27
4er4 2.1 endothiapepsin/H-142 6.80 7.00

Table 4 Protein-ligand com-
plexes in the test set

[a] Experimentally deter-
mined pKd values.

[b] Predicted pKd values
given by SCORE.
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complexes and repeating all the statistical analysis. Then,
the size of the data set was increased to 50, 60, …, until to
the original training set itself. The r2, q2, and 2

predr  obtained
along this procedure are shown in Figure 4a; while the s,
sPRESS, and spred are shown in Figure 4b. The coefficients in
the scoring function obtained along this procedure are listed
in Table 5.

Program description

Based on the final scoring function obtained, we have writ-
ten a program, SCORE, in the C++ language. All the neces-
sary inputs to perform computation include a file storing the
protein in PDB format and another file storing the correspond-
ing ligand in MOL2 format. The program will read in the
structures, assign atom types and parameters, do the calcula-

Figure 4a The squared correlation coefficients observed in
the Evolutionary Test

Figure 4b The standard deviations (in log units) observed
in the Evolutionary Test

Table 5 Coefficients of each term in the scoring function in the Evolutionary Test

Size[a] VB MB SHB MHB WHB SWH MWH WWH HM RT Const.

30 -0.171 1.135 0.668 0.138 0.185 0.297 -0.655 0.163 1.221 -0.154 1.865
40 -0.152 0.916 0.612 0.219 0.177 0.244 -0.619 0.264 1.225 -0.180 1.952
50 -0.179 0.998 0.646 0.184 0.152 0.310 -0.713 0.319 1.183 -0.155 2.152
60 -0.174 0.924 0.615 0.198 0.169 0.258 -0.629 0.325 1.213 -0.170 2.071
70 -0.175 0.962 0.613 0.197 0.168 0.255 -0.678 0.317 1.201 -0.164 2.109
80 -0.159 0.977 0.579 0.202 0.158 0.282 -0.690 0.335 1.227 -0.166 2.075
90 -0.174 0.901 0.612 0.180 0.155 0.268 -0.697 0.333 1.153 -0.152 2.268
100 -0.159 0.866 0.584 0.210 0.160 0.272 -0.682 0.290 1.165 -0.153 2.150
110 -0.164 0.865 0.597 0.198 0.149 0.235 -0.675 0.333 1.169 -0.154 2.227
120 -0.167 0.954 0.602 0.197 0.147 0.264 -0.718 0.323 1.165 -0.153 2.238
130 -0.170 0.927 0.599 0.186 0.157 0.274 -0.712 0.326 1.189 -0.160 2.228
140 -0.177 0.930 0.622 0.184 0.150 0.275 -0.687 0.321 1.177 -0.155 2.206
150 -0.171 0.932 0.606 0.187 0.154 0.278 -0.686 0.325 1.180 -0.158 2.207
160 -0.178 0.936 0.615 0.193 0.155 0.272 -0.685 0.336 1.192 -0.162 2.178

[a] Size of the data set.
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tion, and then give the dissociation constant of the given pro-
tein-ligand complex. The whole computing process for one
complex is typically within a second on a SGI O2/R10000
workstation. The computational results are output into a text
file in which the detailed information of each ligand atom,
including the atomic binding score, is tabulated. Atomic bind-
ing scores are also written into the MOL2 file which stores
the ligand structure so that the user can observe them di-
rectly in the SYBYL graphic interface. In addition, we clas-
sify ligand atoms into different built-in atom sets in the MOL2
file in terms of their atomic binding scores: a ligand atom
with a binding score higher than 0.10 units is defined as
“GOOD”; a ligand atom with a binding score lower than –
0.10 units is defined as “BAD”; while a ligand atom other-
wise is defined as “NEUTRAL”. These atom sets can be
viewed in different colours in SYBYL (see Figure 5). This
makes the interpretation of protein-ligand interaction possi-
ble in a more straightforward manner.

Discussion

A state-of-the-art solution

We have presented a new empirical method for estimating
the binding affinity of a protein-ligand complex with known
three-dimensional structure. It uses a simple scoring func-
tion to capture the essential physics of the binding process.
The final model achieved a standard deviation of 6.3 kJ/mol
in the leave-one-out cross-validation analysis of 170 com-

plex structures. When it was applied to the test set, which
contains 11 endothiapepsin complexes, the standard error of
prediction was only 3.2 kJ/mol. It will be naive to expect our
simple empirical scoring function to supplant other theoreti-
cally rigorous and computational exhaustive methods like
FEP. But estimating the absolute dissociation constant of a
protein-ligand complex with an average error of approxi-
mately one magnitude is already a significant improvement
for structure-based drug design schemes. Since our scoring
function can be calculated on the fly, it could be incorpo-
rated into database searching or de novo design programs in
which usually thousands of candidate compounds have to be
ranked in a relatively short time. After necessary modifica-
tion, it may also has potential application to other studies,
such as molecular docking, host-guest chemistry, and pro-
tein engineering.

Our original motive of this study is to develop a scoring
function for use specifically in protein-ligand binding affin-
ity estimation rather than borrow a functional description from
another branch of computational chemistry. There are sev-
eral features of our method which deviate from molecular
mechanics-based functions. First, we bypass the need for
hydrogen atoms in computation. It is because exhaustive
minimisation of the crystalline structure is usually needed to
release the internal steric repulsion after adding hydrogen
atoms and the placement of hydrogen atom on rotatable ter-
minal group, such as hydroxyl group, is still a head-aching
problem. Therefore we consider hydrogen atoms implicitly
in the heavy atoms to which they attach and the computa-
tional results demonstrate that this strategy works. Second,
we choose to use “soft” potentials to avoid the over-sensitiv-
ity to precise atomic positions. Therefore our scoring func-

Table 6 Comparison of SCORE with other similar approaches

Approach Bohm [a] Head [b] Gschwend [c] Eldridge [d] SCORE

Samples [e] 45 51 103 82 170
Terms [f] 5 13 8 5 11
r2 [g] 0.762 0.85 0.745 0.710 0.777
s [h] 7.9 5.8 7.2 8.0 6.6
F [i] 32.1 17.8 39.6 – 57.8
q2 [j] 0.696 0.78 0.701 0.658 0.743
sPRESS [k] 9.3 6.5 – 8.7 6.3

[a] Ref. 26
[b] Ref. 27
[c] Ref. 28
[d] Ref. 29
[e] Number of complexes used in the training set.
[f] Number of terms in the scoring function
[g] Squared correlation coefficient given by regressional fitting.
[h] Standard deviation in regressional fitting, kJ/mol.
[i] Fisher significant ratio.
[j] Squared correlation coefficient given by leave-one-out cross-validation
[k] Standard deviation in leave-one-out cross-validation, kJ/mol
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tion can tolerate small uncertainties in the coordinates due to
the experimental determination or molecular modeling. This
feature may be helpful for a practical structure-based drug
design procedure. Third, although we used to include a term
to calculate the “electrostatic interaction” by using traditional
Coulomb equation, we found that it is simply unnecessary
for our scoring function. Thus we skip problematic issues
such as selection of partial charge set and dielectric behav-
iour, both of which remain subjective. Fourth, we have used
a new VDW radius set which is probably the first one devel-
oped specially for binding affinity estimation. The VDW ra-
dius set from AMBER has served as a good start point in the
development of our scoring function. But since it is
parameterized against an endpoint different from ours, we
expect that some optimisation on this set will help to im-
prove the result. As our computational results have shown,
the improvement is not marginal.

Compared to other similar approaches [26-29], we have
obtained better statistical results. As shown in Table 6, our
scoring function achieves the best regressional significance
(F value) and the smallest standard deviation in cross-valida-
tion (sPRESS). This may be the result of using a larger training
set (as discussed in next section) as well as adopting new
methods to calculate hydrogen bonding and hydrophobic ef-
fect during the protein-ligand binding process. While giving
better results, our scoring function still maintains its con-
ciseness. No structure minimisation or additional treatment
is needed before calculating the binding affinity of the com-
plex. This feature lends much convenience to SCORE’s user.

Evolutionary test of an empirical model

All empirical methods have to use a training set and there-
fore they suffer from it: the content of the training set will
influence the final model. The influence could be vital espe-
cially when the training set is not large and diverse enough.
However, how can one know whether the training set is large
enough for the model he is studying? And, how can one know
whether his model will be stable if he could use a larger train-

ing set? These questions actually trouble every researcher
who works on an empirical model and, unfortunately, we have
not found any validation method reported yet to answer these
questions.

As described in the Methods section, we have proposed a
new procedure in an attempt to answer these questions. In
such a procedure, the same model is tested by performing
regressions on randomly constructed data sets. When the size
of the data set increases continuously, conclusions can be
drawn from the tendencies observed in the regressional re-
sults obtained along this procedure. This procedure simulates
the process in which a researcher is able to use larger and
larger data sets to train his model. That is the reason why we
call this procedure “Evolutionary Test”. The idea embedded
in such a procedure is: we do not know what it will be; but
we can make a reasonable prediction by checking what it has
been. An ideal empirical model will have such features in an
Evolutionary Test: first, its predictive ability should increase
with the increase in the size of the data set; second, the coef-
ficients in the model should converge to certain values in-
stead of fluctuating randomly all the time. If a point of con-
vergence is observed after which the predictive ability of the
model under investigation does not improve significantly any
more, it probably means that the data set at that point is al-
ready large enough for the model under investigation and
thus the attempt of using a larger training set is not neces-
sary.

Our scoring function behaves in the Evolutionary Test just
as we have expected. As one can see in Figure 4a and Figure
4b, the regressional fitting of our scoring function decreases
with the increase in the size of the data set. This is not sur-
prising considering that the function is the same while the
diversity of the data set is increasing. However, the predic-
tive ability of the function, which is tested by cross-valida-
tion and the test set, keeps increasing with the increase in the
size of data set. It indicates that the scoring function does get
better trained by using larger data sets and therefore the use
of the current training set in our study is absolutely neces-
sary. In addition, the coefficients of each term in our scoring

Figure 5 Illustration of
atomic binding score: good
atoms in green; bad atoms in
red; while neutral atoms in
blue. (L-benzylsuccinate
bound to carboxypeptidase A,
PDB entry 1CBX)
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function are generally coherent and tend to converge to cer-
tain values along this procedure (see Table 5). Based on these
results, we can come to the conclusion that our scoring func-
tion is a robust, self-consistent empirical model. But we just
cannot neglect that, although the size of data set has less
significant influence after it exceeds 100-120, a convincible
convergence has not achieved yet. According to the tendency
observed so far, a training set consisting of approximately
200-250 protein-ligand complexes will be ideal for our scor-
ing function.

Atomic binding score

Predicting the absolute binding affinity of a protein-ligand
complex at a reasonable level is certainly very useful, but it
may not be enough. In a drug design procedure, medicinal
chemists also care for how to optimize a known lead com-
pound rather than merely know whether it is good or not.
The optimisation of the lead compound is usually intended
to enhance the favourable interaction with the receptor and
diminish the unfavourable. This needs to identify the rela-
tionships between the binding affinity and the chemical struc-
ture of the ligand and preferably evaluate them in a quantita-
tive way.

Maybe the most attractive feature of our method is the
ability of decomposing the binding affinity of the ligand to
its target protein into the contribution of its component at-
oms. As having been described in the Methods section, we
accomplish this by basing our algorithm entirely on atom-
addition. By checking the atomic binding score, one can get
a clear idea of whether a ligand atom is favourable to the
binding process and how much it affects (see Figure 5). Fur-
thermore, one can figure out why it is so by checking each
energy term in the atomic binding score. This feature allows
the direct relationship between the binding affinity and the
structure of the ligand and is especially valuable for lead
optimisation in structure-based drug design. By using the
program SCORE, we can propose the following multi-step
procedure for rational optimisation of lead compounds.

(1) Get the complex structure of the known lead com-
pound, either by experimental determination or molecular
modeling.

(2) Subject the complex structure to SCORE to compute
the binding affinity.

(3) Analyze SCORE’s output and figure out the favour-
able and the unfavourable parts of the lead compound.

(4) Design derivatives by enhancing the favourable parts,
changing the unfavourable parts, or adding new functional
groups to gain additional interactions.

(5) Model the complex structures of the derivatives by
molecular docking and energy minimisation.

(6) Repeat step (2)(3)(4)(5) until the predicted binding
affinities of the designed compounds reach a satisfactory level.

(7) Organic synthesis and bioassay.
(8) With the feedback from experiments, go to step (1) to

start a new round of lead optimisation.

In fact, step (2) to step (6) form a cycle of virtual lead
optimisation on the computer. This will help to save labour
and cost in the following experiment step and thus improve
the overall efficiency of the drug discovery process. A com-
puter program that can automatically perform the virtual lead
optimisation is currently under development in our lab.

Conclusions

In this paper, we have presented the development of an em-
pirical scoring function for use in structure-based drug de-
sign schemes with emphasis on robustness over structural
diversity, accuracy in absolute binding affinity estimation,
and speed of computation. Terms used in the scoring func-
tion are devised to capture the essential energetics of the pro-
tein-ligand binding process. The final model is derived by
regression of a large training set and yields promising results
for both the training set and the test set. The robustness and
internal consistency of the scoring function are demonstrated
by a new validation procedure called Evolutionary Test. Com-
pared with other similar approaches, our method has improved
the quality of binding affinity prediction. Furthermore, with
the introduction of atomic binding score, our method pro-
vides a practical tool for rational optimisation of lead com-
pounds in a drug discovery process.

Supplementary material available statementThe source
code of the program, SCORE, is available by contacting the
authors.
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